1,735 research outputs found
Software Engineering Laboratory (SEL). Data base organization and user's guide, revision 1
The structure of the Software Engineering Laboratory (SEL) data base is described. It defines each data base file in detail and provides information about how to access and use the data for programmers and other users. Several data base reporting programs are described also
The Effect of Transfer Printing on Pentacene Thin-Film Crystal Structure
The thermal deposition and transfer Printing method had been used to produce
pentacene thin-films on SiO2/Si and plastic substrates (PMMA and PVP),
respectively. X-ray diffraction patterns of pentacene thin films showed
reflections associated with highly ordered polycrystalline films and a
coexistence of two polymorph phases classified by their d-spacing, d(001): 14.4
and 15.4 A.The dependence of the c-axis correlation length and the phase
fraction on the film thickness and printing temperature were measured. A
transition from the 15.4 A phase towards 14.4 A phase was also observed with
increasing film thickness. An increase in the c-axis correlation length of
approximately 12% ~16% was observed for Pn films transfer printed onto a PMMA
coated PET substrate at 100~120 C as compared to as-grown Pn films on SiO2/Si
substrates. The transfer printing method is shown to be an attractive for the
fabrication of pentacene thin-film transistors on flexible substrates partly
because of the resulting improvement in the quality of the pentacene film.Comment: 5 pages, 5 figure
Quantum oscillations in adsorption energetics of atomic oxygen on Pb(111) ultrathin films: A density-functional theory study
Using first-principles calculations, we have systematically studied the
quantum size effects of ultrathin Pb(111) films on the adsorption energies and
diffusion energy barriers of oxygen atoms. For the on-surface adsorption of
oxygen atoms at different coverages, all the adsorption energies are found to
show bilayer oscillation behaviors. It is also found that the work function of
Pb(111) films still keeps the bilayer-oscillation behavior after the adsorption
of oxygen atoms, with the values being enlarged by 2.10 to 2.62 eV. For the
diffusion and penetration of the adsorbed oxygen atoms, it is found that the
most energetically favored paths are the same on different Pb(111) films. And
because of the modulation of quantum size effects, the corresponding energy
barriers are all oscillating with a bilayer period on different Pb(111) films.
Our studies indicate that the quantum size effect in ultrathin metal films can
modulate a lot of processes during surface oxidation
Activated O2 dissociation and formation of oxide islands on the Be(0001) surface: Another atomistic model for metal oxidation
By simulating the dissociation of O2 molecules on the Be(0001) surface using
the first-principles molecular dynamics approach, we propose a new atomistic
model for the surface oxidation of sp metals. In our model, only the
dissociation of the first oxygen molecule needs to overcome an energy barrier,
while the subsequent oxygen molecules dissociate barrierlessly around the
adsorption area. Consequently, oxide islands form on the metal surface, and
grow up in a lateral way. We also discover that the firstly dissociated oxygen
atoms are not so mobile on the Be(0001) surface, as on the Al(111) surface. Our
atomistic model enlarges the knowledge on metal surface oxidations by perfectly
explaining the initial stage during the surface oxidation of Be, and might be
applicable to some other sp metal surfaces.Comment: 5 pages, 4 figure
Magneto-elastic coupling and unconventional magnetic ordering in triangular multiferroic AgCrS2
The temperature evolution of the crystal and magnetic structures of
ferroelectric sulfide AgCrS2 have been investigated by means of neutron
scattering. AgCrS2 undergoes at TN = 41.6 K a first-order phase transition,
from a paramagnetic rhombohedral R3m to an antiferromagnetic monoclinic
structure with a polar Cm space group. In addition to being ferroelectric below
TN, the low temperature phase of AgCrS2 exhibits an unconventional collinear
magnetic structure that can be described as double ferromagnetic stripes
coupled antiferromagnetically, with the magnetic moment of Cr+3 oriented along
b within the anisotropic triangular plane. The magnetic couplings stabilizing
this structure are discussed using inelastic neutron scattering results.
Ferroelectricity below TN in AgCrS2 can possibly be explained in terms of
atomic displacements at the magneto-elastic induced structural distortion.
These results contrast with the behavior of the parent frustrated
antiferromagnet and spin-driven ferroelectric AgCrO2
Electronic Correlations in Oligo-acene and -thiophene Organic Molecular Crystals
From first principles calculations we determine the Coulomb interaction
between two holes on oligo-acene and -thiophene molecules in a crystal, as a
function of the oligomer length. The relaxation of the molecular geometry in
the presence of holes is found to be small. In contrast, the electronic
polarization of the molecules that surround the charged oligomer, reduces the
bare Coulomb repulsion between the holes by approximately a factor of two. In
all cases the effective hole-hole repulsion is much larger than the calculated
valence bandwidth, which implies that at high doping levels the properties of
these organic semiconductors are determined by electron-electron correlations.Comment: 5 pages, 3 figure
- …