1,292 research outputs found

    Low-velocity anisotropic Dirac fermions on the side surface of topological insulators

    Full text link
    We report anisotropic Dirac-cone surface bands on a side-surface geometry of the topological insulator Bi2_2Se3_3 revealed by first-principles density-functional calculations. We find that the electron velocity in the side-surface Dirac cone is anisotropically reduced from that in the (111)-surface Dirac cone, and the velocity is not in parallel with the wave vector {\bf k} except for {\bf k} in high-symmetry directions. The size of the electron spin depends on the direction of {\bf k} due to anisotropic variation of the noncollinearity of the electron state. Low-energy effective Hamiltonian is proposed for side-surface Dirac fermions, and its implications are presented including refractive transport phenomena occurring at the edges of tological insulators where different surfaces meet.Comment: 4 pages, 2 columns, 4 figure

    Optical properties of SiC nanotubes: A systematic ab initio\textit{ab initio} study

    Full text link
    The band structure and optical dielectric function ϵ\epsilon of single-walled zigzag [(3,0),(4,0),(5,0),(6,0),(8,0),(9,0),(12,0),(16,0),(20,0),(24,0)], armchair [(3,3),(4,4),(5,5),(8,8),(12,12),(15,15)], and chiral [(4,2),(6,2),(8,4),(10,4)] SiC-NTs as well as the single honeycomb SiC sheet have been calculated within DFT with the LDA. It is found that all the SiC nanotubes are semiconductors, except the ultrasmall (3,0) and (4,0) zigzag tubes which are metallic. Furthermore, the band gap of the zigzag SiC-NTs which is direct, may be reduced from that of the SiC sheet to zero by reducing the diameter (DD), though the band gap for all the SiC nanotubes with a diameter larger than ~20 \AA is almost independent of diameter. For the electric field parallel to the tube axis (E∥z^E\parallel \hat{z}), the ϵ′′\epsilon'' for all the SiC-NTs with a moderate diameter (say, DD >> 8 \AA ) in the low-energy region (0~6 eV) consists of a single distinct peak at ~3 eV. However, for the small diameter SiC nanotubes such as the (4,2),(4,4) SiC-NTs, the ϵ′′\epsilon'' spectrum does deviate markedly from this general behavior. In the high-energy region (from 6 eV upwards), the ϵ′′\epsilon'' for all the SiC-NTs exhibit a broad peak centered at ~7 eV. For the electric field perpendicular to the tube axis (E⊥z^E\perp \hat{z}), the ϵ′′\epsilon'' spectrum of all the SiC-NTs except the (4,4), (3,0) and (4,0) nanotubes, in the low energy region also consists of a pronounced peak at around 3 eV whilst in the high-energy region is roughly made up of a broad hump starting from 6 eV. The magnitude of the peaks is in general about half of the magnitude of the corresponding ones for E∥z^E\parallel \hat{z}

    Activated O2 dissociation and formation of oxide islands on the Be(0001) surface: Another atomistic model for metal oxidation

    Full text link
    By simulating the dissociation of O2 molecules on the Be(0001) surface using the first-principles molecular dynamics approach, we propose a new atomistic model for the surface oxidation of sp metals. In our model, only the dissociation of the first oxygen molecule needs to overcome an energy barrier, while the subsequent oxygen molecules dissociate barrierlessly around the adsorption area. Consequently, oxide islands form on the metal surface, and grow up in a lateral way. We also discover that the firstly dissociated oxygen atoms are not so mobile on the Be(0001) surface, as on the Al(111) surface. Our atomistic model enlarges the knowledge on metal surface oxidations by perfectly explaining the initial stage during the surface oxidation of Be, and might be applicable to some other sp metal surfaces.Comment: 5 pages, 4 figure

    Transferable Pair Potentials for CdS and ZnS Crystals

    Full text link
    A set of interatomic pair potentials is developed for CdS and ZnS crystals. We show that a simple energy function, which has been used to describe the properties of CdSe [J. Chem. Phys. 116, 258 (2002)], can be parametrized to accurately describe the lattice and elastic constants, and phonon dispersion relations of bulk CdS and ZnS in the wurtzite and rocksalt crystal structures. The predicted coexistence pressure of the wurtzite and rocksalt structures, as well as the equation of state are in good agreement with experimental observations. These new pair potentials enable the study of a wide range of processes in bulk and nanocrystalline II-VI semiconductor materials

    Structure stability in the simple element sodium under pressure

    Full text link
    The simple alkali metal Na, that crystallizes in a body-centred cubic structure at ambient pressure, exhibits a wealth of complex phases at extreme conditions as found by experimental studies. The analysis of the mechanism of stabilization of some of these phases, namely, the low-temperature Sm-type phase and the high-pressure cI16 and oP8 phases, shows that they satisfy the criteria for the Hume-Rothery mechanism. These phases appear to be stabilized due to a formation of numerous planes in a Brillouin-Jones zone in the vicinity of the Fermi sphere of Na, which leads to the reduction of the overall electronic energy. For the oP8 phase, this mechanism seems to be working if one assumes that Na becomes divalent metal at this density. The oP8 phase of Na is analysed in comparison with the MnP-type oP8 phases known in binary compounds, as well as in relation to the hP4 structure of the NiAs-type

    Electronic structure and the glass transition in pnictide and chalcogenide semiconductor alloys. Part I: The formation of the ppσpp\sigma-network

    Full text link
    Semiconductor glasses exhibit many unique optical and electronic anomalies. We have put forth a semi-phenomenological scenario (J. Chem. Phys. 132, 044508 (2010)) in which several of these anomalies arise from deep midgap electronic states residing on high-strain regions intrinsic to the activated transport above the glass transition. Here we demonstrate at the molecular level how this scenario is realized in an important class of semiconductor glasses, namely chalcogen and pnictogen containing alloys. Both the glass itself and the intrinsic electronic midgap states emerge as a result of the formation of a network composed of σ\sigma-bonded atomic pp-orbitals that are only weakly hybridized. Despite a large number of weak bonds, these ppσpp\sigma-networks are stable with respect to competing types of bonding, while exhibiting a high degree of structural degeneracy. The stability is rationalized with the help of a hereby proposed structural model, by which ppσpp\sigma-networks are symmetry-broken and distorted versions of a high symmetry structure. The latter structure exhibits exact octahedral coordination and is fully covalently-bonded. The present approach provides a microscopic route to a fully consistent description of the electronic and structural excitations in vitreous semiconductors.Comment: 22 pages, 17 figures, revised version, final version to appear in J. Chem. Phy
    • …
    corecore