32 research outputs found

    Identifying metabolic pathways for production of extracellular polymeric substances by the diatom Fragilariopsis cylindrus inhabiting sea ice

    Get PDF
    Diatoms are significant primary producers in sea ice, an ephemeral habitat with steep vertical gradients of temperature and salinity characterizing the ice matrix environment. To cope with the variable and challenging conditions, sea ice diatoms produce polysaccharide-rich extracellular polymeric substances (EPS) that play important roles in adhesion, cell protection, ligand binding and as organic carbon sources. Significant differences in EPS concentrations and chemical composition corresponding to temperature and salinity gradients were present in sea ice from the Weddell Sea and Eastern Antarctic regions of the Southern Ocean. To reconstruct the first metabolic pathway for EPS production in diatoms, we exposed Fragilariopsis cylindrus, a key bi-polar diatom species, to simulated sea ice formation. Transcriptome profiling under varying conditions of EPS production identified a significant number of genes and divergent alleles. Their complex differential expression patterns under simulated sea ice formation was aligned with physiological and biochemical properties of the cells, and with field measurements of sea ice EPS characteristics. Thus, the molecular complexity of the EPS pathway suggests metabolic plasticity in F. cylindrus is required to cope with the challenging conditions of the highly variable and extreme sea ice habitat

    Extracellular Matrix Assembly in Diatoms (Bacillariophyceae) (I. A Model of Adhesives Based on Chemical Characterization and Localization of Polysaccharides from the Marine Diatom Achnanthes longipes and Other Diatoms).

    No full text
    Extracellular adhesives from the diatoms Achnanthes longipes, Amphora coffeaeformis, Cymbella cistula, and Cymbella mexicana were characterized by monosaccharide and methylation analysis, lectin-fluorescein isothiocyanate localization, and cytochemical staining. Polysaccharide was the major component of adhesives formed during cell motility, synthesis of a basal pad, and/or production of a highly organized shaft. Hot water-insoluble/hot 0.5 M NaHCO3-soluble anionic polysaccharides from A. longipes and A. coffeaeformis adhesives were primarily composed of galactosyl (64-70%) and fucosyl (32-42%) residues. In A. longipes polymers, 2,3-, t-, 3-, and 4-linked/substituted galactosyl, t-, 3-, 4-, and 2-linked fucosyl, and t- and 2-linked glucuronic acid residues predominated. Adhesive polysaccharides from C. cistula were EDTA-soluble, sulfated, consisted of 83% galactosyl (4-, 4,6-, and 3,4-linked/substituted) and 13% xylosyl (t-, 4f/5p-, and 3p-linked/substituted) residues, and contained no uronosyl residues. Ulex europaeus agglutinin uniformly localized [alpha](1,2)-L-fucose units in C. cistula and Achnanthes adhesives formed during motility and in the pads of A. longipes. D-Galactose residues were localized throughout the shafts of C. cistula and capsules of A. coffeaeformis. D-Mannose and/or D-glucose, D-galactose, and [alpha](t)-L-fucose residues were uniformly localized in the outer layers of A. longipes shafts by Cancavalia ensiformis, Abrus precatorius, and Lotus tetragonolobus agglutinin, respectively. A model for diatom cell adhesive structure was developed from chemical characterization, localization, and microscopic observation of extracellular adhesive components formed during the diatom cell-attachment process

    Effects of elevated CO \u3c inf\u3e 2 and O \u3c inf\u3e 3 on aspen clones of varying O \u3c inf\u3e 3 sensitivity

    No full text
    To determine whether elevated CO2 reduces or exacerbates the detrimental effects of O3 on aspen (Populus tremuloides Michx.). Aspen clones 216 and 271 (O3 tolerant), and 259 (O3 sensitive) were exposed to ambient levels of CO2 and O3 or elevated levels of CO2, O3, or CO2 + O3 in the FACTS II (Aspen FACE) experiment, and physiological and molecular responses were measured and compared. Clone 259, the most O3-sensitive clone, showed the greatest amount of visible foliar symptoms as well as significant decreases in chlorophyll, carotenoid, starch, and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) concentrations and transcription levels for the Rubisco small subunit. Generally, the constitutive (basic) transcript levels for phenylalanine ammonia-lyase (Pal) and chalcone synthase (Chs) and the average antioxidant activities were lower for the ozone sensitive clone 259 as compared to the more tolerant 216 and 271 clones. A significant decrease in chlorophyll a, b and total (a+b) concentrations in CO2, O3, and CO2 + O3 plants was observed for all clones. Carotenoid concentrations were also significantly lower in all clones; however, Chs transcript levels were not significantly affected, suggesting a possible degradation of carotenoid pigments in O3-stressed plants. Antioxidant activities and Pal and 1-aminocyclopropane-1-carboxylic acid (ACC)-oxidase transcript levels showed a general increase in all O3 treated clones, while remaining low in CO2 and CO2 + O3 plants (although not all differences were significant). Our results suggest that the ascorbate-glutathione and phenylpropanoid pathways were activated under ozone stress and suppressed during exposure to elevated CO2. Although CO2 + O3 treatment resulted in a slight reduction of O3-induced leaf injury, it did not appear to ameliorate all of the harmful affects of O3 and, in fact, may have contributed to an increase in chloroplast damage in all three aspen clones. © 2003 Elsevier Ltd. All rights reserved

    The iminosugar isofagomine increases the activity of N370S mutant acid β-glucosidase in Gaucher fibroblasts by several mechanisms

    No full text
    Gaucher disease is a lysosomal storage disorder caused by deficiency in lysosomal acid β-glucosidase (GlcCerase), the enzyme responsible for the catabolism of glucosylceramide. One of the most prevalent disease-causing mutations, N370S, results in an enzyme with lower catalytic activity and impaired exit from the endoplasmic reticulum. Here, we report that the iminosugar isofagomine (IFG), an active-site inhibitor, increases GlcCerase activity 3.0 ± 0.6-fold in N370S fibroblasts by several mechanisms. A major effect of IFG is to facilitate the folding and transport of newly synthesized GlcCerase in the endoplasmic reticulum, thereby increasing the lysosomal pool of the enzyme. In addition, N370S GlcCerase synthesized in the presence of IFG exhibits a shift in pH optimum from 6.4 to 5.2 and altered sensitivity to SDS. Although IFG fully inhibits GlcCerase in the lysosome in an in situ assay, washout of the drug leads to partial recovery of GlcCerase activity within 4 h and full recovery by 24 h. These findings provide support for the possible use of active-site inhibitors in the treatment of some forms of Gaucher disease
    corecore