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Abstract

Diatoms are significant primary producers in sea ice, an ephemeral habitat with steep vertical gradients of temperature and
salinity characterizing the ice matrix environment. To cope with the variable and challenging conditions, sea ice diatoms
produce polysaccharide-rich extracellular polymeric substances (EPS) that play important roles in adhesion, cell protection,
ligand binding and as organic carbon sources. Significant differences in EPS concentrations and chemical composition
corresponding to temperature and salinity gradients were present in sea ice from the Weddell Sea and Eastern Antarctic
regions of the Southern Ocean. To reconstruct the first metabolic pathway for EPS production in diatoms, we exposed
Fragilariopsis cylindrus, a key bi-polar diatom species, to simulated sea ice formation. Transcriptome profiling under
varying conditions of EPS production identified a significant number of genes and divergent alleles. Their complex
differential expression patterns under simulated sea ice formation was aligned with physiological and biochemical properties
of the cells, and with field measurements of sea ice EPS characteristics. Thus, the molecular complexity of the EPS pathway
suggests metabolic plasticity in F. cylindrus is required to cope with the challenging conditions of the highly variable and
extreme sea ice habitat.

Introduction

The production of polysaccharide-rich extracellular poly-
meric substances (EPS) by microorganisms is ubiquitous in
many environments: water, soils, benign and pathogenic
biofilms [1, 2], where EPS play important roles in cell
adhesion, cell signalling, ligand binding and as a carbon
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source [3-5]. The production of EPS is a characteristic of
many diatoms [6]; an algal group which contributes 20% of
annual global carbon fixation [7]. EPS production is parti-
cularly a feature of the pennate diatoms that are dominant in
autotrophic biofilms [8, 9] and in sea ice microbial assem-
blages [10].

In sea ice, a biome covering up to 15% of the world’s
ocean area and which supports productive microbial com-
munities within the semi-solid ice-water matrix [11-13],
40% of the dissolved organic matter (DOM) present is EPS
produced by diatoms [14—16]. EPS and DOM modity the
physical structure of the ice-water matrix [17, 18], provide a
rich carbohydrate source [19], and on ice melt, contribute to
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the stimulation of water-column carbon cycling [13, 20, 21],
influencing vertical carbon fluxes to deeper polar waters
[22, 23] and the production of atmospherically active polar
aerosols [24].

Despite the importance of diatom productivity in EPS sea
ice carbon biogeochemistry [25], together with current
changes in the distribution and thickness of polar sea ice
[26], little is known about the expression of genes involved
in the synthesis and excretion of EPS in diatoms [1, 27] and
the biosynthesis pathway of complex EPS is completely
unknown [28]. The main pathways of photosynthesis and
carbohydrate metabolism in diatoms have been recon-
structed [27, 29, 30]. Polysaccharide production pathways
are conserved across the prokaryotes and eukaryotes [1, 31],
with monosaccharides converted to nucleotide sugars and
assembled into polysaccharides by the action of glycosyl-
transferases (GTs) [3, 27]. In diatoms, EPS are assembled in
the Golgi apparatus and transported in vesicles to the cell
membrane and excreted [32]. These EPS then undergo
further self-assembly in the external environment and form
cell frustule coatings, adhesive structures or are used in
locomotion [32-34]. Diatoms change the rates of produc-
tion and chemistry of their EPS in response to external
factors such as nutrients, light and salinity stress [35-37],
but there are no studies on how the pathways underlying
EPS production respond to the environmental drivers that
shape the ecological role of this successful algal group.

We investigated the characteristics of EPS from ice cores
and ice brines from sea ice present in the Weddell Sea and
the East Antarctic ocean sampled across
winter—spring—summer transitions, and exposed to a range
of temperature and salinity conditions (Fig. 1). Based on
these field observations, we designed a laboratory investi-
gation to allow the first reconstruction of a metabolic
pathway of EPS production linked to physiological
measurements in a polar diatom, as a model for the
major environmental transitions experienced by the
majority of microorganisms responsible for EPS production
in polar oceans. Fragilariopsis cylindrus is widely dis-
tributed in the Arctic and Southern Oceans associated with
sea ice [10, 38—40]. Its genome sequence is the first to be
completed for any eukaryotic psychrophilic organism, and
has revealed key evolutionary adaptations to living in polar
oceans [41], with a distinct phenotypic plasticity [40—42],
able to grow at —4 °C, with growth rate decreasing sig-
nificantly at —8 °C [36, 43]. It produces a range of EPS,
whose composition corresponds with that of EPS in natural
sea ice [25, 36].

Fragilariopsis cylindrus was grown across a matrix of
salinity and temperature conditions, from open-water to sea
ice brines of salinity 52 and temperatures of —8 °C (Fig. 2),
measuring cell physiology, yields and chemical composi-
tion of EPS, and the expression patterns of key genes
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involved in carbohydrate synthesis and polysaccharide
production. We reconstructed the first putative metabolic
pathway for EPS production in diatoms, and showed three
different responses of this pathway in relation to salinity and
temperature. These results concur with field measurements
of sea ice EPS, and provide new insights into the physio-
logical flexibility of diatoms, and helps to explain their
success in one of the most extreme and globally significant
biomes.

Materials and methods

Field sample collection and determination of EPS in
Antarctic sea ice

Samples (sea ice brines, ice cores) were collected during
two cruises to the Weddell Sea, Antarctica, in December
2004 (ISPOL) and September—October 2006 (WWOS) [16,
44], and during the Sea Ice Physics and Ecosystems
Experiment (SIPEX) research expedition to Eastern Ant-
arctica (110°-130°E, between September and October 2007
[45], thus encompassing contrasting sea ice conditions and
types from winter to summer in the Weddell Sea, and from a
winter to spring transition (SIPEX) (Fig. 1a). All measure-
ments described here were obtained from opportunistically
collected samples (see [44] for details) from sea ice brines
collected with the sackhole sampling technique, and bulk
sea ice from melted 10-cm-thick ice core segments (see
[16]). Samples were filtered through pre-combusted GF/F
filters (Whatman, 0.7 um) and filters and filtrates were
stored at —20 °C until further analysis.

Brine and ice core samples were analysed for dissolved
organic carbon (DOC), total (CHOrgrar) and dissolved
carbohydrates (dCHOs) and dissolved EPS (dEPS) con-
centrations, and EPS monosaccharide composition [25].
Data for the Weddell and East Antarctic regions were
compared across four temperature subsets; bottom ice at the
seawater interface, with temperatures of —1.7 °C; and ice
cores or brines in decreasing temperature bands of
approximately —2 °C, —4 °C and —8 °C (Fig. 1b, c).

Cell culture experimental conditions

Axenic cultures of F. cylindrus (CCMP1102) were grown
in enriched artificial seawater media [36]. Separate stock
cultures were acclimated at two salinities (34 and 52) over a
3-month period prior to the experiment to avoid the nega-
tive but transient impacts of acute changes in salinity on
diatom photophysiology [36, 43, 46]. These acclimated
cells were then used to establish a set of triplicate control
and temperature-reduction cultures (see Supplementary
Information).
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Fig. 1 a Cruise tracks in the Weddell Sea (from WWOS (W) and
ISPOL (I) cruises) and off East Antarctica (SIPEX (S)). b Dissolved
organic carbon (DOC), total carbohydrate (CHOrgrar) concentrations
and the % contribution of dissolved EPS (dEPS) in sea ice brine
samples from the Weddell Sea and ¢ in sea ice core samples from East
Antarctica (means + standard error, significant differences (p < 0.05 or

A stepwise reduction in temperatures was used (with a
partially repeated measures sampling design, see Supple-
mentary Information) to follow the response of cells to a
range of temperature and salinity conditions representing
phases in the development of sea ice (cf. [47]): phase I,
normal growth conditions in seawater (34 salinity and 0 °C)
before ice formation; phase II, early freezing or frazil
ice formation (salinity 34, 2 days exposure to —4 °C); phase

temperature (°C)

less) between variables indicated by different letter codes); grouped by
temperature categories (standard error + <0.16 °C), with the corre-
sponding % relative abundance of the monosaccharide composition in
dEPS in d Weddell Sea brines and e SIPEX sea ice cores. Variation in
temperature values and number of replicates between b and d due to
subsampling of EPS fractions and sample losses

III, continuing cold condition (salinity 34, 8 days exposure to
—4 °C); phase IV, initiation of brine channel formation and
trapping of cells in pancake ice (salinity 52, 2 days exposure
to —4 °C); phase V was a continuation of these conditions
(8 days exposure to —4 °C) and Phase VI simulated a further
temperature stress (2 days exposure to —8 °C after 8 days
exposure to —4 °C under phase V), as found in colder sea ice
brine channels while maintaining salinity at 52 (Fig. 2a).

SPRINGER NATURE
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Fig. 2 a Six experimental phases, with the temperature and salinity
conditions used in this study. (I) Temperture of 0 °C and salinity 34
(seawater before ice formation), (I) 2 days at —4 °C and salinity 34
(early freezing or frazil ice formation), (II) 8 days at —4 °C and
salinity 34 (late freezing, frazil ice layer formation), (IV) 2 days at —4
°C and salinity 52 (initialization of brine channel formation in ice), (V)
8 days at —4 °C and salinity 52 (established brine channel formation)
and (VI) further temperature stress, 8 days at —4 °C followed by
2 days at —8 °C, and salinity 52. b Four diatom-associated carbohy-
drate fractions investigated; (dACHO+dEPS), extracellular dissolved
carbohydrate and dissolved extracellular polymeric substances;
(CHOyy), intracellular carbohydrate, isolated in hot water extracts;
(CHOyp), extracellular tightly bound carbohydrates/EPS, solubilised
in a hot bicarbonate extraction; (CHOy,), carbohydrate liberated from
dissolving silica frustules in hot alkali; and the trend of increasing
carbohydrate yields across the six experimental phases

Cells (initial density of 1 x 10° cells mL~') were grown
in plastic bottles (5 L, containing 3 L of media). Treatments
and controls (maintained at 0 °C throughout) were estab-
lished in triplicate for both salinity 34 and 52 conditions.
Triplicates were grown for 12 days at 0°C, with a 50%
volume media change at day 10 (to reduce any potential for
nutrient limitation [36] see Supplementary Information),
before the temperature reductions commenced. Designated
flasks were reduced to —4 °C on day 12, and first measured
on day 14 (phases I, I and IV), on day 20 (phase III and V)
and on day 22 after a further decrease to —8 °C for 2 days
(phase VI). Subsamples were taken for measurements of
cell density, cell photophysiology, carbohydrate content,
biochemical composition and RNA extraction. Intrinsic
growth rate (u per day) and Chlorophyll a concentration
was determined at each time point [36].

Cell photophysiology, carbohydrate and EPS
production and composition

Cell maximum PSII photochemical efficiency (F,/F,,) and
functional absorbance cross-section of photosystem II (opgyy,
nm’ per RCII) was determined using a Satlantic FIRe
fluorometer (Satlantic Inc. Halifax, Canada) [36, 48]. Car-
bohydrates (Fig. 2b) were fractionated into dCHO con-
taining dEPS (precipitation with 30 and 70% ethanol,
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termed dEPS oy and dEPS, respectively, [15]) and non-
polymeric lower molecular weight carbohydrates secreted
by cells, and particulate carbohydrates, by filtration [36].
Pellets of cells and associated particulate carbohydrates
were sequentially extracted [36] to obtain a hot water-
extracted carbohydrate (CHOyw) fraction (mainly intracel-
lular storage polysaccharides), a hot bicarbonate-extracted
(CHOyp) fraction (solubilising gelatinous and water-
insoluble EPS such as pads and gels) and a hot alkali
extraction (CHOy,) liberating EPS associated with the
silica frustules [25]. Carbohydrate concentrations in each
fraction were determined using a modified phenol sulphuric
acid assay, uronic acids were determined by standard car-
bazole assay and neutral monosaccharide composition was
determined by gas chromatography linked with mass
spectroscopy [16, 36].

RNA extraction, RNA-seq library preparation and
sequencing

Cells were filtered onto Isopore Polycarbonate filters (1.2
pm, 47 mm, Merck Millipore, Darmstadt, Germany),
immediately frozen in liquid nitrogen and stored at —80 °C.
In phase III, V and VI, the media froze in one of the three
flasks, and we did not extract RNA from that replicate,
resulting in n = 2. Total RNA was extracted using a TRIzol
protocol [49]. Preparation of 50 bp paired-end libraries and
RNA-sequencing with a HiSeq2000 instrument (Illumina,
San Diego, CA, USA) was performed at the Earlham
Institute (Norwich, UK). After initial RNA quality checks,
multiplexed cDNA libraries were constructed, with each
library pool run in a single lane. Sequencing reads were de-
multiplexed using CASAVA (Illumina, San Diego, CA,
USA), allowing for a one base-pair mismatch per library.
Sequencing data was cleaned using Trim Galore! v0.4.4
[50] with FastQC v0.11.5 [51] and Cutadapt v1.14 [52].
Results were summarized in a single report using
MultiQC v1.2 [53]. The RNA-sequencing (RNA-seq)
aligner STAR v2.5.3a [54] was used to align reads
to the F. cylindrus genome assembly v1.0 (Fracyl_assem-
bly_scaffolds.fasta.gz;  http://genome.jgi-psf.org/Fracy1/)
allowing for a maximum of two mismatches
(-—outFilterMismatchNmax2) to ensure stringent
alignment of reads to divergent alleles and allele-specific
RNA-seq analysis [41]. The programme featureCounts [55]
implemented in the Bioconductor R subread package was
used to count reads.

Differential expression and gene ontology
enrichment analysis

Differential gene expression and multidimensional scaling
(MDS) analysis was performed using edgeR [56]. To detect
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differentially expressed genes, pair-wise multiple compar-
isons were performed between experimental treatments
using the glm likelihood ratio test [57] and p values were
corrected for multiple testing [58]. A functional gene
ontology (GO) analysis was performed on differentially
expressed genes (p <0.05) using goseq [59] with default
statistical testing methods [60]. The GO term annotations
associated with each gene and gene length were extracted
from the F. cylindrus genome annotation file using custo-
mized Perl scripts. Enriched GO terms (p <0.05) were
summarized and visualized using REVIGO [61].

Identification and hierarchical clustering analysis of
carbohydrate-related proteins

Genes encoding for carbohydrate-active enzymes (CAZy)
were identified based on homology with biochemically
characterized proteins from the CAZy database (www.cazy.
org, [62]) to perform a hierarchical clustering analysis of
associated mean fragments per kilobase of transcript per
million mapped reads (FPKM) expression values. A one
minus Pearson's correlation distance metric and the average
linking method was applied to cluster genes and results
visualised using the Bioconductor R ComplexHeatmap
package [63].

Reconstruction of a hypothetical EPS pathway map

A draft reconstruction of carbohydrate metabolic pathways
leading to EPS production was generated based on the
annotated set of carbohydrate-active enzymes and manual
curation of metabolic genes from the most recent annotation
of the F. cylindrus genome (http:/genome.jgi.doe.gov/Fra
cyl/) using GO, KEGG pathways and clusters of eukaryotic
orthologous groups (KOG) of proteins [64] information.
Additionally, using canonical polysaccharide biosynthesis
pathways [29, 65] and bibliographic resources for phylo-
genetically close organisms [1, 29-31, 33], metabolic genes
were collected using BLAST [66] searches, and targeted
searches for EC numbers [39] and keywords. For the
reconstruction of the pathway map, we analysed all col-
lected metabolic genes for the presence of signal peptides
using SignalP [67], selecting only proteins that are predicted
to be cytosolic, endoplasmic reticulum (ER) or Golgi
enzymes and lack any conserved plastid (ASAF) or mito-
chondrial targeting sequences. We partially cross-checked
identified GTs for conserved ER and Golgi targeting
sequences using the database LogSigDB [68], but refrained
from an in-depth analysis of ER and Golgi targeting motifs
given the lack of specific data for targeting to, and retention
of, proteins in the diatom Golgi. The EPS pathway was
assembled starting from the canonical polysaccharide
pathways, and metabolic reactions catalysed by identified

gene products were connected based on EC numbers as
informed by KEGG and BRENDA biochemical reaction
databases and mapped to the experimental gene expression
data during sea ice formation.

Statistical analysis

Statistical analyses were conducted using SPSS® 18.0
and Minitab v.13.3 (Minitab Inc). Significant differences
were determined using ¢ test and analysis of variance
(ANOVA, with Tukey's post hoc tests). Data were tested for
normality and homogeneity of variances (Shapiro—Wilk
test, Levene test) and log transformation was done on data
deviating from these assumptions. All statistically sig-
nificant differences quoted are at p<0.05 or less (two-
tailed). = Monosaccharide =~ compositional data  for
carbohydrate fractions were analysed using ANOSIM and
SIMPER (Primer v.6, Plymouth, UK). Canonical corre-
spondence analysis (CCA) was used to extract the major
significant relationships present between the physiological,
biochemical and transcriptome datasets using the data
values for each treatment (using MVSP v3.1, Kolvec Ltd,
North Wales, UK).

Availability of data and materials

Protocols and full details are given in the Supplementary
Information. RNA-seq data are available in the ArrayEx-
press database (www.ebi.ac.uk/arrayexpress) under acces-
sion number E-MTAB-5153.

Results

Distribution and chemistry of EPS in Antarctic sea
ice

There were significant differences in the concentrations and
quality of DOM, CHOrtgrar, and dEPS with decreasing
temperatures in sea ice brine samples from the Weddell Sea
(Fig. 1b, d) and bulk ice samples from Eastern Antarctic
Ocean (Fig. 1c, e). High concentrations of DOC and CHO-
ToTAL Were present in samples from the seawater—ice inter-
face (temperatures of —1.7 °C, —2.0 °C for Weddell Sea and
East Antarctica, Fig. 1b, ¢), while CHOtgra concentrations
decreased in colder brine samples. Similar decreases in
concentrations were found in bulk ice concentrations
(Fig. 1c). In both brine and bulk ice, the percentage con-
tribution of EPS to CHOtorar concentrations increased
significantly with decreasing temperatures (from 70 to 95%
in brines, and from 35 to 45 to 55% in bulk ice (p < 0.01),
Fig. 1b, c). Coupled with this increase in % dEPS were
significant changes in the monosaccharide composition of
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Fig. 3 a Intrinsic growth rate (u per day), b cell chlorophyll a content (ng per cell), ¢ maximum PSII photochemical efficiency (F,/Fp),
d effective cross-sectional area of PSII (6psy)) (mean + standard error, significant differences between variables in ice stages (p < 0.05 or less)
indicated by different letter codes); average yield (mean =+ standard error) of phenol sulphuric acid quantified carbohydrates pg C per cell) in e
dissolved carbohydrate (dACHO), including dEPS and dEPS,ppiex components; f hot bicarbonate-extracted (CHOyg) carbohydrates and uronic
acids (UA); g hot water-extracted (CHOyw) carbohydrates and uronic acids (UA), h hot alkali-extracted (CHOy,) carbohydrates and uronic acids

(UA) fractions, with the corresponding %

relative abundance of the monosaccharide composition of i

dCHO, j CHOys,

k CHOyw and 1 CHOyy extracted fractions from Fragilariopsis cylindrus cultures growing under six experimental phases.

the EPS in colder ice brines (with significantly lower relative
abundance of glucose (Glc), and increases in galactose (Gal),
mannose (Man), fucose (Fuc) and rhamnose (Rha), p <
0.001), and similarly in bulk ice samples (decreases in Glc
and increases in Man, p < 0.05) (Fig. 1d, e).

Changes in F. cylindrus growth and
photophysiology

Fragilariopsis cylindrus grew rapidly (intrinsic growth rate
p per day = 0.17 + 0.02) at salinity 34 and 0 °C (phase I),
with high values of F,/F,, and Chl a per cell (Fig. 3a—c).
Growth rates were not reduced by lowering temperatures
(—4°C after 2 days, phase II) (Fig. 3a). Cells at high-
er salinity (phase IV, 52  salinity) initially
maintained growth rates or Chl a per cell compared to
phases II or III, but growth rates significantly declined (p <
0.01) after 8 days at —4 °C (phase V). Chl a per cell
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increased after prolonged exposure to —4 °C and —8 °C
(phases V, VI) (Fig. 3b). Significant declines in F,/F,, were
associated with slower growth at lower temperatures
(Fig. 3c), but were independent of salinity (no significant
differences between phases II, III, IV and V), and decreased
further at —8 °C (phase VI, Fig. 3c). Decreases in tem-
perature resulted in initial declines in opgy, followed by
significant increases in cells exposed to lower temperatures
for more than 2 days (phases III, V and VI) (Fig. 3d). opst
was negatively correlated with growth rate (r = —0.578, n
=18 at p <0.05).

Changing yields and chemical composition of
carbohydrates

During phase I, F. cylindrus produced yields of 0.4 pg C per
cell of dCHO, of which 75% was dEPS containing mainly
Man, Gal, Glc and xylose (Xyl) (Fig. 3e, i). Yields of dCHO
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remained unchanged between phases I and III (Fig. 3e), but
there were significant changes in the monosaccharide
composition of dEPS (analysis of similarities (ANOSIM)
global R =0.923, p <0.001) with increased proportions of
Man, Fuc and Glc, and reductions in Gal when temperatures
reduced to —4 °C (Fig. 3i). The proportion of dEPS (and
dEPS o mpiex) in ACHO decreased during longer exposure to
—4 °C (phases II to III, Fig. 3e) due to increased production
of non-EPS carbohydrates in this fraction. Yields of com-
plex extracellular mucilages (CHOyg) were lower than
those of dCHO, and did not change as temperature
decreased to —4 °C (phases I to III, Fig. 3f). The compo-
sition of CHOyg changed with lower temperatures (phases
II and III), with decreased uronic acid content (from 20 to
10% of CHOyp, Fig. 3f), significant decreases in Man and
increases in Xyl, arabinose (Ara), Fuc and Gal (global R =
0.9, p <0.001) (Fig. 3)).

Higher salinity at —4 °C (phase IV) induced significant
increases in yields of dCHO, CHOyg and dEPS (63% of
dCHO at phases IV and V, 70% at phase VI), and increased
contributions of uronic acids in CHOyg (Fig. 3e, ).
Increased salinity resulted in significant declines in Fuc and
Gal and increased abundance of Man (p < 0.001), resulting
in a Glc-Man-rich profile of dCHO and CHOgyg (Fig. 3i, j).
The Man content of dCHO increased with further exposure
to low temperatures (8 days at —4 °C, phase V, Fig. 3i).
Exposure to —8 °C for 2 days (phase VI) did not sig-
nificantly affect yields of dCHO or CHOyg or composition
of CHOyg (phase VI composition data for dCHO were lost
due to an instrument failure).

Yields of intracellular storage carbohydrates
(CHOgqw) of 0.4pg C per cell during phases I and II
decreased significantly (p <0.01) when cells experi-
enced low temperature (—4 °C) for more than 8 days
(phase III, Fig. 3g). The uronic acid content of CHOyw
was low, with no change in monosaccharide composi-
tion between phases I, II or III (global R=0.333).
Increased salinity significantly increased (p <0.05)
CHOyw yields (Fig. 3g). Subsequent temperature
changes did not affect yield, but extended periods at —4
°C, and 2 days at —8 °C (phases V and VI) resulted in
significant declines in Ara, Gal, Xyl and Man content,
with CHOgw becoming dominated by Glc (from 40 to
80%, Fig. 3k), suggesting an increased contribution of
chrysolaminarin in CHOpyy.

Frustule-associated carbohydrate (CHOy,) showed no
significant changes in yield as temperature decreased to —4
°C over 8 days (phases I to III, Fig. 3h). CHOy, had a high
uronic acid content (Fig. 3h), and Glc, Gal, Man, Ara and
Xyl as the main monosaccharides (Fig. 31), with decreasing
temperature resulting in significant increases in Man (phase
I to II). CHOy, yields were significantly higher (p <0.01)
at salinity 52 (phases IV to VI), with substantial increases in
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Fig. 4 Multidimensional scaling (MDS) plot of digital gene expression
profiles for Fragilariopsis cylindrus RNA-seq libraries. Distances on
the plot reflect the coefficient of variation of expression between
samples from a top set of 5000 genes with highest biological variation.
Data were normalized according to edgeR’s TMM scaling method

Man, and declines in other monosaccharides (Fig. 31). This
Man-rich composition was maintained throughout phases V
and VI (Fig. 31), with maximal yields per cell after 2 days at
—8°C (Fig. 3h).

Identification of genes involved in the production of
EPS

MDS of digital gene expression profiles of F. cylindrus
revealed a clear separation between open-water conditions
(phase I) and all other phases (dimension 1, Fig. 4, Fig. S3).
This primary separation (associated with lowered tempera-
ture) represented a significant upregulation in transcripts
involved in translation (translational initiation and elonga-
tion) and RNA metabolic processes (RNA and rRNA pro-
cessing, pseudouridine synthesis), carbohydrate metabolic
processes (gluconeogenesis, glycolytic process), as well as
transport and  photosynthetic = metabolic  processes
(Fig. Sla—e). Continuing low temperatures (—4 °C, Fig. 2a)
caused further reprogramming of the F. cylindrus tran-
scriptome, with phases II to VI separating on MDS
dimension 2 (Fig. 4). Eight days at —4°C (phase III)
increased the expression of genes involved in RNA and
rRNA processing, gluconeogenesis, photosynthesis and
light-harvesting and metabolic processes (Fig. Sl1b).
Acclimation to higher salinity (phases IV, V and VI, clus-
tered on MDS dimension 2, Fig. 4) increased the expression
of genes involved in glycolytic processes, translational
initiation, RNA and rRNA processing, transport and pho-
tosynthesis and light-harvesting processes (Fig. Slc,d), and
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in phase VI, rRNA processing, metabolic processes and
photosynthesis and light-harvesting (Fig. Sle). These
changes corresponded to major changes in photo-
physiology, carbohydrate yields and composition (Fig. 3).
We integrated data from carbohydrate biosynthetic
pathways (based on EC numbers, KEGG and BRENDA
biochemical reaction databases), RNA-seq, including GTs,
ATP-binding cassette (ABC) transporters and translocating
ATPases, yields and chemical composition of carbohy-
drates, to identify genes involved in EPS synthesis. Genes
encoding for 195 carbohydrate-active enzymes were iden-
tified (using CAZy [62]) in the genome of F. cylindrus
(excluding divergent allelic gene copies, Table S1),
including 65 glycoside hydrolases (GHs) and 116 GTs.
Expression patterns varied, with three gene expression
clusters related to phase: maximal expression in phase I
(cluster 1), maximal expression in phase III (cluster 2) and
maximal expression in phase VI (cluster 3) (Fig. S2). The
largest clusters of strongly induced genes were observed in
phases I and VI, with a large cluster of down-regulated
genes in phase III (8 days exposure to —4 °C). A number of
GHs were up-regulated in phases I, II and III (Table S1).
Cluster analysis of expression data for 60 protein-coding
genes including divergent allelic gene copies involved in
pathways for the synthesis of nucleotide sugars and glyco-
proteins revealed three major groups (Fig. 5a). Many of the
involved proteins were encoded by more than one gene, for
example, the enzyme dTDP-Glc 4,6-dehydrogenase
(RMLB) is encoded at four different genetic loci with two
loci encoding for divergent allelic gene copies, resulting in
six predicted gene models including divergent allelic gene
copies (Fig. 5a, Fig. 6, Table S2). To distinguish gene
models associated with multiple allelic pairs, they are
highlighted with a corresponding number of asterisks,
indicating which two gene models belong to a divergent
allelic pair. There were significant relationships (Fig. 5b)
between the absolute gene expression values, the clustering
of these 60 genes including associated divergent allelic
copies and the physiological responses of F. cylindrus
across the six phases (CCA explaining 85.5% of the
cumulative constrained eigenvalues, with significant corre-
lations (p <0.001) between gene expression and physiolo-
gical variables). CCA axis 1 (CCAl) represented a
significant gradient of increasing cell yields of CHOya
uronic acids (uHA), and Fuc, Gal and Glc contents of
dCHO, CHOyg and CHOy,, and decreased EPS content of
dCHO, with a positive association between CCA1 score and
the period of temperature stress. CCA axis 2 (CCA2)
represented a gradient of decreased photosynthetic activity
(low F,/F, high Glc content of CHOyg), and increased
yields of CHOgy,, uronic acids in CHOyg and higher Man
content in CHOgg and CHOgyy,, corresponding to increases
in salinity and temperature decreases to —8 °C between
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phases I, IV and VI (Fig. 5b). The greatest differences in
physiological and gene expression response were between
phase III and VI, compared to phase I, when cells had
experienced longer periods of lower temperatures, agreeing
with the pattern of overall gene expression (Fig. 4).

The three clusters of gene expression patterns mapped
coherently to sub-elements of the reconstructed metabolic
EPS pathway (Fig. 6). In phases I, II and IV, when F.
cylindrus had the highest growth rates, the main enzymes
with up-regulated expression (green dots on Fig. 6) were
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<« Fig. 5 a Hierarchical clustering analysis of expression values (mean

fragments per kilobase of transcript per million mapped reads, FPKM)
for 60 carbohydrate-active enzymes and isoenzymes (divergent allelic
pairs indicated GENE#_1, GENE#_2) annotated in the F. cylindrus
genome sequence and proposed for a putative EPS synthesis pathway
in F. cylindrus across six experimental phases. For gene codes,
abbreviations and annotations see Table S2 and compare Fig. 6.
Colour scale ranges from saturated red for highly expressed genes to
saturated blue for weakly expressed genes; white indicates medium
expression. A one minus Pearson's correlation distance metric was
applied to cluster rows (genes) using the complete linkage method. b
Canonical correspondence analysis triplot of the expression patterns of
60 F. cylindrus genes involved in a hypothetical EPS synthesis path-
way (FPKM expression values, 3 groups coloured by similarity in
expression pattern (see a), associated with temperature and salinity
(centroids for phases I-VI indicated by boxed roman numerals), and
diatom cell physiology and EPS production (vectors; chl a, chlor-
ophyll a per cell; HW, CHOyw; HA, CHOya; % of EPS in dCHO
fraction; %EPS; uHB, uHA, uronic acid yield per cell in HB extraction
and HA extractions; F,/Fp; Glcg, Galy, Fucy, Fucyg, Manyg Galyp,
Glcyp, Fucya, Mangy,, relative abundance of monosaccharides in
dCHO; CHOyp and CHOyp fractions). Correlations between gene
expression and  physiological variables on CCAl and
CCA2 significant at p < 0.001

involved in Glc and fructose (Fru) activation pathways and
conversion to the nucleotide sugars GDP-mannose
(GDP-Man) and GDP-fructose (GDP-Fuc) (Fig. 5a, b,
Fig. 6). Induction of RMLB and dTDP-4-dehydrorhamnose
3,5-epimerase (RMLC) in phase I and II suggests the pro-
duction of TDP-Rha (Rha was found in CHOy,). RMLB
was also induced during phases V, when increased Rha was
present in CHOyg and CHOyw. This expression cluster also
included enzymes in the conversion between UDP-glucose
(UDP-Glc) and UDP-galactose (UDP-Gal), and in the pro-
duction pathway for amino sugars (glutamine-fructose-6-
phosphatetransaminase, glucosamine-phosphate N-acetyl
transferase (GNA), phosphoacetylglucosaminemutase) (Fig. 6).

The second expression cluster (yellow dots), including
genes  (phosphoglucomutase = (PGM), UDP-N-acet-
ylglucosamine diphosphorylase (UAP), UGPA) that cata-
lyse the conversion of glucose-6-phosphate (Glc-6-P) to
glucose-1-phosphate (Glc-1-P) potentially leading to chry-
solaminarin production, and production of UDP-Glc, UDP-
Gal and the uronic acid nucleotide sugars UDP-glucuronic
acid (glucuronate) (UDP-GIcUA) and UDP-
galacturonicacid (galacturonate) (UDP-GalA), was up-
regulated during phase III (extended period at —4 °C;
Fig. 6). This cluster was associated with the CCA1 gradient
and with changes in cell physiology, EPS content and
increased Gal content in CHOyg and increased Glc content
in dEPS (Fig. 5b, Fig. 3f, h). Increasing expression in uronic
acid synthesis pathways, of three transmembrane
phospholipid-translocating ~ ATPases  (flippases) and
increased expression of ABC transporter system genes in
phases III, IV and VI (Fig. 5b and 6) suggest increased
production of EPS in the Golgi.

The final cluster (blue dots) contained genes highly up-
regulated in phase VI, showing cells increasing their acti-
vation of intracellular Glc kinase (GLK) and passing it
through fructose-6-phosphate (Fru-6-P) and fructose-1:6-
bisphosphate (Fru-1:6-BP) into the tricarboxylic acid (TCA)
cycle (glucose-6-phosphate isomerase (G6PI), fructose-
bisphosphatase (FBP)) (Fig. 6). Increased expression of
ABC transporters indicate potentially increased activity in
the Golgi leading to EPS secretion. During phase VI,
enzymes involved as precursors to chitin formation (GNA)
were up-regulated, with chitin synthase expression mark-
edly increased. The expression of enzymes in the main
pathways for GDP-Man, GDP-Fuc, tyrosinediphosphate
glucose (TDP-Glc) and TDP-Rha production were sig-
nificantly reduced during phase VI.

Discussion

EPS production by polar diatoms is a significant mechanism
for survival for these important primary producers [18, 36,
69]. Data from both brines and melted ice cores (which
measure different elements of the overall ice EPS pools,
[16]) showed increased proportions of more chemically
diverse EPS at lower temperatures. Increases in Man, Rha,
Fuc, Xyl and Ara will increase the structural diversity of
EPS [36, 70, 71], affording the ice crystal-influencing
properties [17, 18], and formation of sticky brine channel
plugs [69, 72] and protective mucilages surrounding diatom
microbial cells [36, 46, 70]. Temperature and salinity is
physically coupled within sea ice core profiles [73], thus as
cells are incorporated within a growing ice matrix during
the formation and consolidation of natural sea ice, diatoms
need to adjust to decreasing temperatures and increasing
salinity.

The transcriptomic and physiological results demon-
strates a range of responses in the carbohydrate dynamics
and EPS production of F. cylindrus to changing temperature
and salinity, and provides a model for the production of
EPS by other diatoms. Differential patterns of gene
expression are part of a set of regulatory steps, including
protein abundance, enzyme activation and presence of co-
factors, that will change the cell metabolism and result in
EPS production in diatoms [74-76]. Decreasing tempera-
ture to —4 °C had a major effect on the transcriptome of F.
cylindrus, with increased expression of enzymes involved in
RNA metabolism, translation and carbohydrate metabolism.
The significant overrepresentation of metabolic processes
related to RNA metabolism throughout the experimental
phases II-VI agrees with previous work showing that under
low temperatures, ribosomal genes and associated GO term
annotations are significantly up-regulated in F. cylindrus to
compensate for less efficient translation under low

SPRINGERNATURE



S. N. Aslam et al.

( )
GALK
protein ID
[ | I 264529¢ YGPAIPCM ) protein 1D
NEEEN 273208 DEEN W213392
Galactose » Gal-1-P » (T ) e,
2716 2rri0 o T\ Gal S e
protein 1D o UGE protein ID Y
132221- rotein D UGPAIPGM Jprotein 10 S I/ 1709310 (')
2i6es1e B W 1s6177- () B = W200086. () K] M 203168 (°)
. [ 199459 * ..-. .214147. (@] .. -. 2752220
j LEEE W2 R B 213392 R
D 54.22 > CeP s P\ Gk ) e
G6P! protein 1D § : UGDH """"""
g B W W157591 () S| Thymidylyl- protein ID 'Y
= [T 2550970 (4) Mannose ¥ \transferase 215451
protein ID | puEE 180623 — 271881
[ [ [ | [ B W24 ~
| 3 RMLB
> Frep 222 wp g 3 S |m prOtein D \Gleua/ "
protein = N 1704520 (*) “——t0—oouou- e
w] w2 ) o * 5
2] ")\ M 27 4sss. (o) =™ I 176468 () protein ID ¥
=l % protein 1D m= e o M e )
I W W[27e260- | W2s7s03. | 279148¢ (°)
( Bl 237644 () O B ‘.= gsggi? H [l WM 267198
[ ]
s ( B BN W[200277¢ () v
(“ protein ID &
B T255025e () T I I 186511e (%) 5 TDP-4-dehydro-
B 170890 B Bl E231027. () [ 6-deoxy-Glc
v N Man-1-P  <€4— 2 RMLC protein ID
Fru-1:6-BP GlcN-6-P N | | [l 191088+ (*)
gycoysis » 3 °\| [ 199348+ (")
> > L 2
A/ Sl p?otein ID MPG a
o B W 2696320 { TRE:]P‘ ) -/ NDP- |
| 273617¢ v a sugars Ul | 2038220
Ac-CoA Bm|2s3792e T/ >
vV [ GDP-\ e phospholipid-translocating ATPase )\
i GIcNAC-6-P flippase
. - p—
TCA P PN lycosyltransfer
glycosyltransferases
cycle RAGM p‘F)otein ID S B ( )
HEE T (1570800 GMD rotein 1D
W [7)104088. 5
v B 206067+«
4 GlcNAc-1-P \NMPs + NMP
o] o
~ &
8 N v
£ ucPiUAP ) |8
) protein ID Polymerisation/
| ] | 209086+ (%) secretion
.. . . 214147+ () ( ABC transporter ) -
( L system protein 1D >
UDP- 5137 b GienAc EEE ™ 152850 2
GalNAc o o [ 172872
\ 2 > EeW
8 2 P ] B 178079«
@ v [ | T 1912260 (:)
3 | B 145774 ()
a UDP-ManNAGc o Bl [ 2747000
o + protein 1D
SN 76970 (*)
(L Glycoproteins ..! W256133e (%) )
+ v relative
Chitin EPS ,
row min row max

temperatures [77]. This, coupled with the strong up-
regulation of an antifreeze protein (JGI protein ID
161472) under phases V and VI (Table S3), a multigene
family known to be most strongly affected by lowering
temperatures and increasing salinities typical for sea ice
formation [78], indicates that the observed gene expression
are due to decreasing temperatures and salinity.

SPRINGER NATURE

The genome of F. cylindrus contains highly divergent
alleles that appear adaptive to fluctuating environments [41]
and divergent alleles were represented in the EPS pathway
in similar proportions as they appeared in its overall gen-
ome (~25%). The ability of F. cylindrus to re-programme
significant parts of its transcriptome, including genes
involved in EPS synthesis, to acclimate to changing
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Fig. 6 Expression of genes involved in proposed biosynthetic path-
ways leading to EPS production in Fragilariopsis cylindrus under six
experimental phases. Colour scale represents absolute gene expression
values (FPKM) on a relative scale per row (gene). Expression patterns
for identified enzymes and isoenzymes are shown together with Joint
Genome Institute (JGI) protein identifiers. Gene models belonging to
divergent allelic pairs are highlighted with asterisks. To distinguish
gene models associated with multiple allelic pairs encoding for a single
enzyme, they are highlighted with a corresponding number of asterisks
(* or **), indicating which two gene models belong to a divergent
allelic pair. Green, yellow and blue dots indicate membership in one of
three expression pattern clusters (see Fig. 5a). Chemical compound
abbreviations: Glc-6-P glucose-6-phosphate, Glc-1-P glucose-1-phos-
phate, Fru-6-P fructose-6-phosphate, Fru-1:6-BP fructose-1:6-bispho-
sphate, UDP-Glc UDP-glucose, Gal-1-P galactose-1-phosphate, UDP-
Gal UDP-galactose, Man-6-P mannose-6-phosphate, Man-1-P man-
nose-1-phosphate, GDP-Man GDP-mannose, GDP-Fuc GDP-fructose,
TDP-Glc tyrosinediphosphate glucose, TDP-4-dehydro-6-deoxy-
Glc dTDP-4-dehydro-6-deoxy-a-p-glucose, GlcN-6-P  glucosamine-

6-phosphate, GIcNAc-6-P N-acetylglucosamine-6-phosphate,
GlcNAc-1-P N-acetylglucosamine- 1-phosphate, UDP-GIcNAc
UDP-N-acetylglucosamine, UDP-ManNAc UDP-N-acet-

ylmannosamine, UDP-GalNAc UDP-N-acetylgalactosamine, UDP-
GlcUA UDP-glucuronic acid (glucuronate), UDP-GalA UDP-galac-
turonicacid (galacturonate). Enzyme abbreviations: GLK glucokinase,
PGM phosphoglucomutase, GALK galactokinase, UGE UDP-glucose-
4-epimerase, G6PI glucose-6-phosphate isomerase, PGI phosphoglu-
coseisomerase, FBP fructose-bisphosphatase, PMM phosphomanno-
mutase, MPG mannose-1-phosphateguanyltransferase, GMD GDP-
mannose 4,6-dehydratase, GNA glucosamine-phosphate N-acetyl-
transferase, UDG UDP-glucose-6-dehydrogenase, GLMS glutamine-
fructose-6-phosphatetransaminase, FRK fructokinase, UAP UDP-N-
acetylglucosamine diphosphorylase, RMLB dTDP-glucose 4,6-dehy-
dratase, PAGM phosphoacetylglucosaminemutase, RMLC dTDP-4-
dehydrorhamnose 3,5-epimerase, CHS chitin synthase

temperature and salinity [40], is part of a broader pattern of
adaptation in this taxon to living in polar habitats.

Fragilariopsis cylindrus showed declines in physiologi-
cal activity as temperature decreased and salinity increased.
Sea ice diatoms remain physiologically active at salinities
from 34 to >200, and temperatures from —1.8 °C to <—20 °
C [18, 69, 79], by altering their protein expression, produ-
cing compatible solutes and antifreeze proteins [79, 80], and
by the production of EPS that form barriers around cells
[18, 36, 69]. Ice diatoms exhibit photo-physiological and
metabolic plasticity, with a synergistic interaction between
decreasing temperature and increasing salinity [42], evident
from similar growth rates between phases I, II and IV,
despite differences in photophysiology. The EPS and
intracellular polysaccharides produced by F. cylindrus were
similar to those of other sea ice and benthic diatom taxa
[35-37, 81, 82], and to those found in the field study, with
significant reprogramming evident within our reconstructed
EPS production pathway, as cells responded to changes in
temperature and salinity, resulting in altered EPS
charactersitics.

When F. cylindrus was photosynthesizing and actively
growing (centroids for phases I, Il and IV clustered with cell

growth variables in the CCA), the main genes up-regulated
(‘'green' coded genes) were components of the pathways for
Glc and Fru activation, and for conversion to Man, Fuc and
Rha. Not all genes within each cluster showed identical
patterns of expression (some were only highly expressed in
phase I, e.g. G6PI, others more broadly, e.g. fructokinase
(FRK)) as shown by the scatter in the CCA (Fig. 5b), but
they all showed significant associations between gene
expression, cell physiology and EPS production. Glc and
Fru are products of the pentose-phosphate pathways [30],
and are utilized for ATP production (glycolysis, TCA
cycle), storage compounds (chrysolaminarin) or activated to
make other sugars and derivatives. Strong induction of FRK
and MPI in phases I, II, IV and V is indicative of activation
of the Fru—Man pathway, generating mannose-6-phosphate
[29, 31] which is utilised to produce the nucleotide sugars
GDP-Man and GDP-Fuc (Fig. 6), and corresponds to the
inclusion of Man and Fuc in EPS produced in those con-
ditions. Increased Man and Fuc content of EPS is associated
with greater surface activity and gel stiffness [71], a
response to colder temperatures, altering the rheological
properties of the EPS produced to provide protective cell
coatings [36, 46]. We did not identify mannose-1-
phosphateguanyltransferase =~ (MPG)  (that  converts
mannose-1-phosphate to GDP-Man), though a lack of
orthologs for MPG has also been reported for the diatoms
Thalassiosira and Phaeodactylum and the stramenopile
macroalgae Ectocarpus [31]. This reaction must be cata-
lysed by an (yet) unidentified enzyme, since Man is an
important constituent of diatom EPS, particularly in lower-
solubility structural EPS [35, 81]. The pathway for syn-
thesizing UDP-N-acetylglucosamine, which is used for the
production of glycoproteins which contribute to folding and
adhesion properties in diatom EPS [33], and homologues of
two cell adhesion molecules previously identified in P.
tricornutum [33], were up-regulated in F. cylindrus during
under temperature and salinity stress.

The conversion of Glc-6-P to Glc-1-P [29] allows for
synthesis of UDP-Glc and the nucleotide sugars TDP-Glc and
TDP-Rha by RMLB and RMLC. The Rha content increased in
CHOgjy in phases I and IT (and IV and V) and in ice brine EPS
(Fig. 1d). We found higher proportions of Gal and Rha in
CHOy, in the 34 salinity treatments, with a substantial
increase in Man and higher CHOy, yields at higher salinity.
CHOyy, are associated with the diatom silica frustule [82, 83],
with glucuronomannans (substituted mannans with high uronic
acid concentrations) the most abundant polysaccharides in
diatom frustules [8, 35]. Fragilariopsis cylindrus and F. curta
(also found in sea ice) have a greater Gluc-rich and Man-rich
CHOgy, fraction compared to the ice-associated taxon Syne-
dropsis [36]. These shifts reflect the metabolic flexibility of F.
cylindrus to alter its frustule-associated polysaccharide matrix
in response to the combined effects of salinity and temperature.
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The most significant change in the transcriptome in phase
II (—4 °C for 8 days) was up-regulation of PGM and UAP/
UPGA/PGM leading to UDP-Glc, and for uronic acid pre-
cursors (UDP-GlcUa and UDP-GalA), and down-regulation of
many GTs. GTs play a role in the Golgi body where the
polysaccharides are constructed stepwise on the ER mem-
branes or in the lumen of the Golgi [84], and conserved ER
and Golgi body targeting motifs were identified for selected
GTs in F. cylindrus including allelic variant pairs (e.g., V-
acetylglucosaminyltransferase (JGI protein IDs 189180/
142623) and chitin synthase (JGI protein IDs 197697/256133);
Fig. 6). There was a decline in the %EPS in dCHO from 70%
to 50% during longer exposure to —4 °C (from phase 1II to III,
Fig. 3e) with increased production of non-EPS carbohydrates
linked to physiological stress (high opsy [37]). With higher
salinities (typical for brine channels), cells increased the pro-
portion of EPS in the dCHO fraction, with many of the GTs
down-regulated in phase III induced in phase IV.

The third cluster of genes expressed were associated with
the response of F. cylindrus to increased salinity, with a subset
strongly expressed during phase VI. Higher salinity increases
F. cylindrus gene expression for a range of metabolic func-
tions, including amino-acid and carbohydrate metabolism [79],
seen in phases IV, V and VI. In natural sea ice, exposure to
higher salinities will only occur in parallel with declining
temperatures, and our experiment was designed to simulate
this simultaneous salinity and temperature stress. Previously
reported pathways down-regulated in response to single sali-
nity, or temperature modifications (e.g. energy production
[79]) were not reduced in early phases, when cells up-regulated
genes for RNA processing and metabolic activity to maintain
growth. The diatom Thalassiosira weissflogii also alters its
transcriptome to maintain rates of carbon metabolism and
growth between salinities of 21 to 35 [85], and increased EPS
production in response to salinity occurs in Phaeodactylum
tricornutum and Cylindrotheca closterium [35, 86]; F. cylin-
drus [36]; and to a variable extent in 7. weissflogii [85]. In
phase IV (—4°C, 52 salinity), F. cylindrus maintained its
growth, with the main EPS production pathway up-regulated
and various Man, Glc and uronic acid-rich EPS being pro-
duced. This ability to maintain metabolic activity under
simultaneous changes in salinity and temperature is an clear
adaptation by F. cylindrus to living in the sea ice environment
[42]. RMLB and RMLC were also induced during phases IV
and V, when more Rha was present in CHOyg and CHOyy.
Increases in uronic acids and Man content in EPS produced in
salinity 52 will increase gel stiffness [36, 71] necessary to
generate the structural mucilage barriers observed around cells
in natural brine channels [17, 69].

Further low temperature stress in phases V—VI significantly
reduced diatom photosynthesis and growth. Shortage of new
photoassimilates would explain the increased activation of
GLK, and increased expression of enzymes converting Glc
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through Fru-6-P and Fru-1:6-BP into the TCA cycle (G6PI,
FBP) to generate ATP. Increased TCA activity is also linked to
lipid production as a response to colder and more saline con-
ditions [40]. The strong induction of almost all GTs encoded in
the F. cylindrus genome, and several ABC transporter and
flippases under the lowest temperatures and highest salinities,
may reflect the need of the cells to produce protective EPS at
this time. Increased expression of UDP-N-acetylglucosamine
transferases and a-N-acetylglucosaminidases as temperatures
declined and salinity increased, and high gene expression of
chitin synthase (phase VI) indicate potential for chitin secretion
in F. cylindrus EPS. Amino sugars are present in all the dif-
ferent EPS fractions produced by F. cylindrus, including in the
CHOgy, fraction, which is closely associated with the silica
frustule [36], but their functional role is unclear.

Diatoms play major roles in global primary production
and biogeochemical cycles, and almost all species produce
cell-associated and extracellular EPS [6, 7]. In natural sea
ice, these EPS contribute to the overall carbohydrate bud-
gets in sea ice [25]. The identification of three broad
expression patterns within our reconstructed EPS produc-
tion pathway, that align with physiological, biochemical
and in-field measurements of EPS characteristics, provides
an opportunity to investigate the environmental signals and
regulators of key genes in diatom EPS production, and to
elucidate the patterns of protein expression and activiation,
that directly control these metabolic pathways. This raises
the question whether these responses are characteristic of
highly adapted polar diatoms [41] or are common features
of the EPS production pathways of diatom taxa found in
other environments.
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