936 research outputs found

    Assessment of detectability of neutral interstellar deuterium by IBEX observations

    Full text link
    The abundance of deuterium in the interstellar gas in front of the Sun gives insight into the processes of filtration of neutral interstellar species through the heliospheric interface and potentially into the chemical evolution of the Galactic gas. We investigate the possibility of detection of neutral interstellar deuterium at 1 AU from the Sun by direct sampling by the Interstellar Boundary Explorer (IBEX). We simulate the flux of neutral interstellar D at IBEX for the actual measurement conditions. We assess the number of interstellar D atom counts expected during the first three years of IBEX operation. We also simulate observations expected during an epoch of high solar activity. In addition, we calculate the expected counts of D atoms from the thin terrestrial water layer, sputtered from the IBEX-Lo conversion surface by neutral interstellar He atoms. Most D counts registered by IBEX-Lo are expected to originate from the water layer, exceeding the interstellar signal by 2 orders of magnitude. However, the sputtering should stop once the Earth leaves the portion of orbit traversed by interstellar He atoms. We identify seasons during the year when mostly the genuine interstellar D atoms are expected in the signal. During the first 3 years of IBEX operations about 2 detectable interstellar D atoms are expected. This number is comparable with the expected number of sputtered D atoms registered during the same time intervals. The most favorable conditions for the detection occur during low solar activity, in an interval including March and April each year. The detection chances could be improved by extending the instrument duty cycle, e.g., by making observations in the special deuterium mode of IBEX-Lo.Comment: Accepted for Astronomy & Astrophysic

    A miniature mass analyser for in-situ elemental analysis of planetary material-performance studies

    Get PDF
    The performance of a laser ablation mass analyser designed for in-situ exploration of the chemical composition of planetary surfaces has been investigated. The instrument measures the elemental and isotopic composition of raw solid materials with high spatial resolution. The initial studies were performed on NIST standard materials using IR laser irradiance (< 1 GW cm−2) at which a high temporal stability of ion formation and sufficiently low sample consumption was achieved. Measurements of highly averaged spectra could be performed with typical mass resolution of m/Δm ≈ 600 in an effective dynamic range spanning seven decades. Sensitive detection of several trace elements can be achieved at the ~ ppm level and lower. The isotopic composition is usually reproduced with 1% accuracy, implying good performance of the instrument for quantitative analysis of the isotopic fractionation effects caused by natural processes. Using the IR laser, significant elemental fractionation effects were observed for light elements and elements with a high ionization potential. Several diatomic clusters of major and minor elements could also be measured, and sometimes these interfere with the detection of trace elements at the same nominal mass. The potential of the mass analyser for application to sensitive detection of elements and their isotopes in realistic samples is exemplified by measurements of minerals. The high resolution and large dynamic range of the spectra makes detection limits of ~100ppb possible. Figure The mass spectrum of Allende meteorite measured by a miniature laser ablation mass spectrometer. Similar mass spectra of planetary materials in-situ could be measured with spatial resolution of 10-100 μm (white circles) providing means for chemical analysis of planetary surface

    Characteristics of proton velocity distribution functions in the near-lunar wake from Chandrayaan-1/SWIM observations

    Get PDF
    Due to the high absorption of solar wind plasma on the lunar dayside, a large scale wake structure is formed downstream of the Moon. However, recent in-situ observations have revealed the presence of protons in the near-lunar wake (100 km to 200 km from the surface). The solar wind, either directly or after interaction with the lunar surface (including magnetic anomalies), is the source of these protons in the near-wake region. Using the entire data from the SWIM sensor of the SARA experiment onboard Chandrayaan-1, we analysed the velocity distribution of the protons observed in the near-lunar wake. The average velocity distribution functions, computed in the solar wind rest frame, were further separated based on the angle between the upstream solar wind velocity and the IMF. Several proton populations were identified from the velocity distribution and their possible entry mechanism were inferred based on the characteristics of the velocity distribution. These entry mechanisms include (i) diffusion of solar wind protons into the wake along IMF, (ii) the solar wind protons with finite gyro-radii that are aided by the wake boundary electric field, (iii) solar wind protons with gyro-radii larger than lunar radii from the tail of the solar wind velocity distribution, and (iv) scattering of solar wind protons from the dayside lunar surface or from magnetic anomalies. In order to gain more insight into the entry mechanisms associated with different populations, backtracing is carried out for each of these populations. For most of the populations, the source of the protons obtained from backtracing is found to be in agreement with that inferred from the velocity distribution. There are few populations that could not be explained by the known mechanisms and remain unknown.Comment: 8 figures, paper accepted in Icarus (2016), http://dx.doi.org/10.1016/j.icarus.2016.01.03

    Surface charging of thick porous water ice layers relevant for ion sputtering experiments

    Get PDF
    We use a laboratory facility to study the sputtering properties of centimeter-thick porous water ice subjected to the bombardment of ions and electrons to better understand the formation of exospheres of the icy moons of Jupiter. Our ice samples are as similar as possible to the expected moon surfaces but surface charging of the samples during ion irradiation may distort the experimental results. We therefore monitor the time scales for charging and dis- charging of the samples when subjected to a beam of ions. These experiments allow us to derive an electric conductivity of deep porous ice layers. The results imply that electron irradiation and sputtering play a non-negligible role for certain plasma conditions at the icy moons of Jupiter. The observed ion sputtering yields from our ice samples are similar to previous experiments where compact ice films were sputtered off a micro-balance.Comment: arXiv admin note: text overlap with arXiv:1509.0400

    U-Th dating, taphonomy, and taxonomy of shell middens at Klasies River main site indicate stable and systematic coastal exploitation by MIS 5c-d

    Get PDF
    The archaeological record, particularly of shellfish, from the Klasies River main site (KRM) is important in understanding the fluctuating nature of coastal occupational patterns and changing coastal ecologies. In this paper, we provide new uranium–thorium (U-Th) dates for one of the earlier phases of coastal exploitation at KRM, and the microstratigraphic analyses generate novel information about the taphonomy of shell-bearing deposits from the Later Stone Age (LSA) to the MSA I period that, in turn, provide a broader context for middening at the site. A wide range of syndepositional taphonomic processes related to human activities and post-depositional effects include burning, fragmentation and compaction, chemical alteration, and cementation. Despite such issues influencing recovery, shellfish data are informative and are presented from three layers of the Witness Baulk: Shell Midden One (SMONE), Black Occupational Soils (BOS), and Silty Black Soils (SBLS). These coarse shell midden deposits exhibit visible decalcification coupled with cementation with secondary carbonate formation in association with conditions of high moisture and soft sedimentation deformation of the underlying sediments of SBLS. This stratigraphy section is chronologically anchored for the first time using U-Th dating of speleothems associated with a hiatus after the deposition of BOS. The three ages, 110,060 ± 1,100, 109,800 ± 970, and 106,000 ± 2,100 years, place the BOS layer as the base of the SASL sub-member at over 110 ka, making the underlying middens from the LBS member even older. The zooarchaeological analyses of the three layers indicate coastal ecological changes from more sheltered conditions prior to the hiatus, with the exploitation of alikreukel and brown mussels predominating. Before 110 ka, in BOS and SBLS, more exposed coastal conditions occurred, and the diversity of exploited shellfish increased. SMONE and BOS are associated with MSA II/Mossel Bay lower lithic technology and SBLS with MSA I technology, indicating asynchronous coastal ecological and technological changes. The MIS 5c-d evidence for early coastal occupation at KRM provides details on the period during which coastal occupation became stable and systematic on the South African coast and puts the KRM amongst the handful of sites with shell-bearing deposits, occurring prior to 110 ka in South Africa.publishedVersio

    Studying the Lunar-Solar Wind Interaction with the SARA Experiment aboard the Indian Lunar Mission Chandrayaan-1

    Full text link
    The first Indian lunar mission Chandrayaan-1 was launched on 22 October 2008. The Sub-keV Atom Reflecting Analyzer (SARA) instrument onboard Chandrayaan-1 consists of an energetic neutral atom (ENA) imaging mass analyzer called CENA (Chandrayaan-1 Energetic Neutrals Analyzer), and an ion-mass analyzer called SWIM (Solar wind Monitor). CENA performed the first ever experiment to study the solar wind-planetary surface interaction via detection of sputtered neutral atoms and neutralized backscattered solar wind protons in the energy range ~0.01-3.0 keV. SWIM measures solar wind ions, magnetosheath and magnetotail ions, as well as ions scattered from lunar surface in the ~0.01-15 keV energy range. The neutral atom sensor uses conversion of the incoming neutrals to positive ions, which are then analyzed via surface interaction technique. The ion mass analyzer is based on similar principle. This paper presents the SARA instrument and the first results obtained by the SWIM and CENA sensors. SARA observations suggest that about 20% of the incident solar wind protons are backscattered as neutral hydrogen and ~1% as protons from the lunar surface. These findings have important implications for other airless bodies in the solar system.Comment: 4 pages, 6 figure
    • …
    corecore