2,265 research outputs found

    Noncontact modulation calorimetry of metallic liquids in low Earth orbit

    Get PDF
    Noncontact modulation calorimetry using electromagnetic heating and radiative heat loss under ultrahigh-vacuum conditions has been applied to levitated solid, liquid, and metastable liquid samples. This experiment requires a reduced gravity environment over an extended period of time and allows the measurement of several thermophysical properties, such as the enthalpy of fusion and crystallization, specific heat, total hemispherical emissivity, and effective thermal conductivity with high precision as a function of temperature. From the results on eutectic glass forming Zr-based alloys thermodynamic functions are obtained which describe the glass-forming ability of these alloys

    Thermodynamics of Cu47Ti34Zr11Ni8, Zr52.5Cu17.9Ni14.6Al10Ti5 and Zr57Cu15.4Ni12.6Al10Nb5 bulk metallic glass forming alloys

    Get PDF
    The differences in the thermodynamic functions between the liquid and the crystalline states of three bulk metallic glass forming alloys, Cu47Ti34Zr11Ni8, Zr52.5Cu17.9Ni14.6Al10Ti5, and Zr57Cu15.4Ni12.6Al10Nb5, were calculated. The heat capacity was measured in the crystalline solid, the amorphous solid, the supercooled liquid, and the equilibrium liquid. Using these heat capacity data and the heats of fusion of the alloys, the differences in the thermodynamic functions between the liquid and the crystalline states were determined. The Gibbs free energy difference between the liquid and the crystalline states gives a qualitative measure of the glass forming ability of these alloys. Using the derived entropy difference, the Kauzmann temperatures for these alloys were determined

    Detectability of atmospheric features of Earth-like planets in the habitable zone around M dwarfs

    Get PDF
    We investigate the detectability of atmospheric spectral features of Earth-like planets in the habitable zone (HZ) around M dwarfs with the future James Webb Space Telescope (JWST). We use a coupled 1D climate-chemistry-model to simulate the influence of a range of observed and modelled M-dwarf spectra on Earth-like planets. The simulated atmospheres served as input for the calculation of the transmission spectra of the hypothetical planets, using a line-by-line spectral radiative transfer model. To investigate the spectroscopic detectability of absorption bands with JWST we further developed a signal-to-noise ratio (S/N) model and applied it to our transmission spectra. High abundances of CH4_4 and H2_2O in the atmosphere of Earth-like planets around mid to late M dwarfs increase the detectability of the corresponding spectral features compared to early M-dwarf planets. Increased temperatures in the middle atmosphere of mid- to late-type M-dwarf planets expand the atmosphere and further increase the detectability of absorption bands. To detect CH4_4, H2_2O, and CO2_2 in the atmosphere of an Earth-like planet around a mid to late M dwarf observing only one transit with JWST could be enough up to a distance of 4 pc and less than ten transits up to a distance of 10 pc. As a consequence of saturation limits of JWST and less pronounced absorption bands, the detection of spectral features of hypothetical Earth-like planets around most early M dwarfs would require more than ten transits. We identify 276 existing M dwarfs (including GJ 1132, TRAPPIST-1, GJ 1214, and LHS 1140) around which atmospheric absorption features of hypothetical Earth-like planets could be detected by co-adding just a few transits. We show that using transmission spectroscopy, JWST could provide enough precision to be able to partly characterise the atmosphere of Earth-like TESS planets around mid to late M dwarfs.Comment: 18 pages, 10 figure

    Low voltage control of ferromagnetism in a semiconductor p-n junction

    Full text link
    The concept of low-voltage depletion and accumulation of electron charge in semiconductors, utilized in field-effect transistors (FETs), is one of the cornerstones of current information processing technologies. Spintronics which is based on manipulating the collective state of electron spins in a ferromagnet provides complementary technologies for reading magnetic bits or for the solid-state memories. The integration of these two distinct areas of microelectronics in one physical element, with a potentially major impact on the power consumption and scalability of future devices, requires to find efficient means for controlling magnetization electrically. Current induced magnetization switching phenomena represent a promising step towards this goal, however, they relay on relatively large current densities. The direct approach of controlling the magnetization by low-voltage charge depletion effects is seemingly unfeasible as the two worlds of semiconductors and metal ferromagnets are separated by many orders of magnitude in their typical carrier concentrations. Here we demonstrate that this concept is viable by reporting persistent magnetization switchings induced by short electrical pulses of a few volts in an all-semiconductor, ferromagnetic p-n junction.Comment: 11 pages, 4 figure

    Absence of skew scattering in two-dimensional systems: Testing the origins of the anomalous Hall effect

    Get PDF
    We study the anomalous Hall conductivity in spin-polarized, asymmetrically confined two-dimensional electron and hole systems, focusing on skew-scattering contributions to the transport. We find that the skew scattering, principally responsible for the extrinsic contribution to the anomalous Hall effect, vanishes for the two-dimensional electron system if both chiral Rashba subbands are partially occupied, and vanishes always for the two-dimensional hole gas studied here, regardless of the band filling. Our prediction can be tested with the proposed coplanar two-dimensional electron/hole gas device and can be used as a benchmark to understand the crossover from the intrisic to the extrinsic anomalous Hall effect.Comment: 4 pages, 2 figures include

    Association of Botryosphaeriaceae grapevine trunk disease fungi with the reproductive structures of Vitis vinifera

    Get PDF
    Several species belonging to the Botryosphaeriaceae were isolated from grapevine (Vitis vinifera) tissue other than wood during a survey of two vineyards planted to cultivars ‘Chardonnay’ and ‘Shiraz’ in the Hunter Valley, New South Wales, Australia over the 2007/08 and 2008/09 growing seasons. A total of 188 isolates corresponding to nine different species of Diplodia, Dothiorella and Neofusicoccum anamorphs were isolated from dormant buds, flowers, pea-sized berries and mature berries prior to harvest in addition to 142 isolates from the trunks of the same vines. Furthermore, the occurrence of Dothiorella viticola, Diplodia mutila and Neofusicoccum australe is reported here for the first time from grapevines in the Hunter Valley. These findings may provide important information for the management and spread of Botryosphaeriaceae in vineyards where they are considered serious wood-invading pathogens. Botryosphaeriaceae are occasionally found on bunches, however, until now they have not directly been related  to bunch rots. Control strategies for trunk diseases caused by Botryosphaeriaceae are currently limited to remedial surgery and wound protection. These strategies do not consider other grapevine tissue as potential inoculum sources for infection of Botryosphaeriaceae in the vineyard.

    Edge spin accumulation in semiconductor two-dimensional hole gases

    Full text link
    The controlled generation of localized spin densities is a key enabler of semiconductor spintronics In this work, we study spin Hall effect induced edge spin accumulation in a two-dimensional hole gas with strong spin orbit interactions. We argue that it is an intrinsic property, in the sense that it is independent of the strength of disorder scattering. We show numerically that the spin polarization near the edge induced by this mechanism can be large, and that it becomes larger and more strongly localized as the spin-orbit coupling strength increases, and is independent of the width of the conducting strip once this exceeds the elastic scattering mean-free-path. Our experiments in two-dimensional hole gas microdevices confirm this remarkable spin Hall effect phenomenology. Achieving comparable levels of spin polarization by external magnetic fields would require laboratory equipment whose physical dimensions and operating electrical currents are million times larger than those of our spin Hall effect devices.Comment: 6 pages, 5 figure

    Quantum Spin Hall Insulator State in HgTe Quantum Wells

    Full text link
    Recent theory predicted that the Quantum Spin Hall Effect, a fundamentally novel quantum state of matter that exists at zero external magnetic field, may be realized in HgTe/(Hg,Cd)Te quantum wells. We have fabricated such sample structures with low density and high mobility in which we can tune, through an external gate voltage, the carrier conduction from n-type to the p-type, passing through an insulating regime. For thin quantum wells with well width d < 6.3 nm, the insulating regime shows the conventional behavior of vanishingly small conductance at low temperature. However, for thicker quantum wells (d > 6.3 nm), the nominally insulating regime shows a plateau of residual conductance close to 2e^2/h. The residual conductance is independent of the sample width, indicating that it is caused by edge states. Furthermore, the residual conductance is destroyed by a small external magnetic field. The quantum phase transition at the critical thickness, d = 6.3 nm, is also independently determined from the magnetic field induced insulator to metal transition. These observations provide experimental evidence of the quantum spin Hall effect.Comment: 16 pages, 5 figure

    Quantum Zeno dynamics of a field in a cavity

    Full text link
    We analyze the quantum Zeno dynamics that takes place when a field stored in a cavity undergoes frequent interactions with atoms. We show that repeated measurements or unitary operations performed on the atoms probing the field state confine the evolution to tailored subspaces of the total Hilbert space. This confinement leads to non-trivial field evolutions and to the generation of interesting non-classical states, including mesoscopic field state superpositions. We elucidate the main features of the quantum Zeno mechanism in the context of a state-of-the-art cavity quantum electrodynamics experiment. A plethora of effects is investigated, from state manipulations by phase space tweezers to nearly arbitrary state synthesis. We analyze in details the practical implementation of this dynamics and assess its robustness by numerical simulations including realistic experimental imperfections. We comment on the various perspectives opened by this proposal
    • …
    corecore