21 research outputs found
Detectable clonal mosaicism and its relationship to aging and cancer
In an analysis of 31,717 cancer cases and 26,136 cancer-free controls from 13 genome-wide association studies, we observed large chromosomal abnormalities in a subset of clones in DNA obtained from blood or buccal samples. We observed mosaic abnormalities, either aneuploidy or copy-neutral loss of heterozygosity, of >2 Mb in size in autosomes of 517 individuals (0.89%), with abnormal cell proportions of between 7% and 95%. In cancer-free individuals, frequency increased with age, from 0.23% under 50 years to 1.91% between 75 and 79 years (P = 4.8 × 10(-8)). Mosaic abnormalities were more frequent in individuals with solid tumors (0.97% versus 0.74% in cancer-free individuals; odds ratio (OR) = 1.25; P = 0.016), with stronger association with cases who had DNA collected before diagnosis or treatment (OR = 1.45; P = 0.0005). Detectable mosaicism was also more common in individuals for whom DNA was collected at least 1 year before diagnosis with leukemia compared to cancer-free individuals (OR = 35.4; P = 3.8 × 10(-11)). These findings underscore the time-dependent nature of somatic events in the etiology of cancer and potentially other late-onset diseases
Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome
To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP
microarray intensity data of 38,303 women from cancer genome-wide association studies
(20,878 cases and 17,425 controls) and detected 124 mosaic X events42Mb in 97 (0.25%)
women. Here we show rates for X-chromosome mosaicism are four times higher than mean
autosomal rates; X mosaic events more often include the entire chromosome and participants
with X events more likely harbour autosomal mosaic events. X mosaicism frequency
increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and
autosomes. Methylation array analyses of 33 women with X mosaicism indicate events
preferentially involve the inactive X chromosome. Our results provide further evidence that
the sex chromosomes undergo mosaic events more frequently than autosomes, which could
have implications for understanding the underlying mechanisms of mosaic events and their
possible contribution to risk for chronic diseases