341 research outputs found

    Enhanced coupling design of a detuned damped structure for clic

    Full text link
    The key feature of the improved coupling design in the Damped Detuned Structure (DDS) is focused on the four manifolds. Rectangular geometry slots and rectangular manifolds are used. This results in a significantly stronger coupling to the manifolds compared to the previous design. We describe the new design together with its wakefield damping properties.Comment: 3 pages, 8 figures, submitted to IPAC1

    Advanced Experimental Techniques for RF and DC Breakdown Research

    Get PDF
    Advanced experimental techniques are being developed to analyze RF and DC breakdown events. First measurements with a specially built spectrometer have been made with a DC spark setup [1] at CERN and will soon be installed in the CLIC 30GHz accelerating structure test stand to allow comparison between DC and RF breakdown phenomena. This spectrometer is able to measure the light intensity development during a breakdown in narrow wavelength bands in the visible and near infrared range. This will give information about the important aspects of the breakdown including chemical elements, temperature, plasma parameters and possibly precursors of a breakdown

    A novel variant of the 13C-methacetin liver function breath test that eliminates the confounding effect of individual differences in sytemic CO2 kinetics

    Get PDF
    The principle of dynamic liver function breath tests is founded on the administration of a 13C-labeled drug and subsequent monitoring of 13CO2 in the breath, quantified as time series delta over natural baseline 13CO2 (DOB) liberated from the drug during hepatic CYP-dependent detoxification. One confounding factor limiting the diagnostic value of such tests is that only a fraction of the liberated 13CO2 is immediately exhaled, while another fraction is taken up by body compartments from which it returns with delay to the plasma. The aims of this study were to establish a novel variant of the methacetin-based breath test LiMAx that allows to estimate and to eliminate the confounding effect of systemic 13CO2 distribution on the DOB curve and thus enables a more reliable assessment of the hepatic detoxification capacity compared with the conventional LiMAx test. We designed a new test variant (named "2DOB") consisting of two consecutive phases. Phase 1 is initiated by the intravenous administration of 13C-bicarbonate. Phase 2 starts about 30 min later with the intravenous administration of the 13C-labelled test drug. Using compartment modelling, the resulting 2-phasic DOB curve yields the rate constants for the irreversible elimination and the reversible exchange of plasma 13CO2 with body compartments (phase 1) and for the detoxification and exchange of the drug with body compartments (phase 2). We carried out the 2DOB test with the test drug 13C-methacetin in 16 subjects with chronic liver pathologies and 22 normal subjects, who also underwent the conventional LiMAx test. Individual differences in the systemic CO2 kinetics can lead to deviations up to a factor of 2 in the maximum of DOB curves (coefficient of variation CV ≈ 0.2) which, in particular, may hamper the discrimination between subjects with normal or mildly impaired detoxification capacities. The novel test revealed that a significant portion of the drug is not immediately metabolized, but transiently taken up into a storage compartment. Intriguingly, not only the hepatic detoxification rate but also the storage capacity of the drug, turned out to be indicative for a normal liver function. We thus used both parameters to define a scoring function which yielded an excellent disease classification (AUC = 0.95) and a high correlation with the MELD score (RSpearman = 0.92). The novel test variant 2DOB promises a significant improvement in the assessment of impaired hepatic detoxification capacity. The suitability of the test for the reliable characterization of the natural history of chronic liver diseases (fatty liver-fibrosis-cirrhosis) has to be assessed in further studies

    Material Selection and Characterization for High Gradient RF Applications

    Get PDF
    The selection of candidate materials for the accelerating cavities of the Compact Linear Collider (CLIC) is carried out in parallel with high power RF testing. The maximum DC breakdown field of copper, copper alloys, refractory metals, aluminium and titanium have been measured with a dedicated setup. Higher maximum fields are obtained for refractory metals and for titanium, which exhibits, however, important damages after conditioning. Fatigue behaviour of copper alloys has been studied for surface and bulk by pulsed laser irradiation and ultrasonic excitation, respectively. The selected copper alloys show consistently higher fatigue resistance than copper in both experiments. In order to obtain the best local properties in the device a possible solution is a bi-metallic assembly. Junctions of molybdenum and copper-zirconium UNS C15000 alloy, achieved by HIP (Hot Isostatic Pressing) diffusion bonding or explosion bonding were evaluated for their mechanical strength. The reliability of the results obtained with both techniques should be improved. Testing in DC and radiofrequency (RF) is continued in order to select materials for a bi-metal exhibiting superior properties with respect to the combination C15000-Mo

    Calculation of wakefields in a 17 GHz beam-driven photonic band-gap accelerator structure

    Get PDF
    We present the theoretical analysis and computer simulation of the wakefields in a 17 GHz photonic band-gap (PBG) structure for accelerator applications. Using the commercial code CST Particle Studio, the fundamental accelerating mode and dipole modes are excited by passing an 18 MeV electron beam through a seven-cell traveling-wave PBG structure. The characteristics of the longitudinal and transverse wakefields, wake potential spectrum, dipole mode distribution, and their quality factors are calculated and analyzed theoretically. Unlike in conventional disk-loaded waveguide (DLW) structures, three dipole modes (TM[subscript 11]-like, TM[subscript 12]-like, and TM[subscript 13]-like) are excited in the PBG structure with comparable initial amplitudes. These modes are separated by less than 4 GHz in frequency and are damped quickly due to low radiative Q factors. Simulations verify that a PBG structure provides wakefield damping relative to a DLW structure. Simulations were done with both single-bunch excitation to determine the frequency spectrum of the wakefields and multibunch excitation to compare to wakefield measurements taken at MIT using a 17 GHz bunch train. These simulation results will guide the design of next-generation high-gradient accelerator PBG structures.United States. Dept. of Energy. High Energy Physics Division (Contract DEFG02- 91ER40648)China. Fundamental Research Funds for the Central Universities (Contract ZYGX 2010J055

    Carboxylation of phenols and asymmetric nucleophile addition across C=C bond

    Get PDF
    The regioselective carboxylation of electron-rich (hetero)aromatics employing decarboxylases in the redox-neutral (reverse) carboxylation reaction using bicarbonate or CO2(g) is currently exploited for the biocatalytic synthesis of carboxylic acids.1 Three enzyme classes exert complementary regioselectivities through diverse mechanisms: (i) Whereas the o-carboxylation of phenols (an equivalent to the Kolbe-Schmitt reaction) is mediated by Zn2+-dependent o-benzoic acid (de)carboxylases,2 (ii) the -carboxylation of hydroxystyrenes is catalysed by phenolic/ferulic acid (de)carboxylases acting via a pair of Tyr-Arg residues.3 (iii) Surpringly, these enzymes also exhibit a catalytic promiscuity for the nucleophile addition of H2O,4 NH2-OMe, cyanide and n-Pr-SH across the vinyl C=C bond via a quinone-methide intermediate, which yields the corresponding (S)-configurated adducts in up to 91% e.e.5 (iv) In search of ATP-independent regio-complementary p-benzoic acid (de)carboxylases, we discovered that 3,4-dihydroxybenzoic acid decarboxylase from Enterobacter cloacae6 (DHBDC_Ec) surprisingly depends on prenylated FMN7 as cofactor. In an attempt to propose a mechanism for the carboxylation of catechol by DHBDC_Ec, QM calculations revealed that the transient formation of a 1,3-dipolar cycloaddition product (as suggested for the decarboxylation of cinnamic acid with ferulic acid decarboxylase from S. cerevisiae8) was highly disfavored (\u3e30 kcal/M). As an alternative, we propose a mono-covalent nucleophile adduct involving a prFMN iminium electrophile (~14 kcal/M). Please click Additional Files below to see the full abstract
    corecore