19 research outputs found

    Public first aid education model design study based on user experience

    Get PDF
    BackgroundPresently, China’s first aid penetration rate remains relatively low, leaving ample room for improvement in the existing first aid education model. Given its role as a service for the general public, public first aid education must thoroughly consider the learning needs and experiences of the public when designing the teaching mode.MethodsSemi-structured interviews were employed to gather detailed insights into participants’ experiences in the first aid learning process. Subsequently, NVivo was utilized to analyze the interviews and identify specific design strategies. Additionally, a 7-point scale questionnaire was employed to assess the intervention effects of music familiarity and the simulation of teaching aids on users’ willingness and confidence in learning. Building upon the design strategy, a “feedback device + app” approach was proposed. Finally, user satisfaction was evaluated through a scale questionnaire.ResultsThe use of familiar music had a significant positive effect on participants’ willingness and confidence to learn, while users’ fear of teaching aids had no effect on willingness and confidence. The user experience-based first aid education model can better meet the public’s learning needs for first aid knowledge and skills.ConclusionThis study proposes a first aid education model based on user experience design methodology, which optimizes the public’s self-learning experience by evoking positive emotions while circumventing negative emotions. The educational model was recognized by users in terms of design concepts and is expected to help increase first aid prevalence in the future

    Some recent studies on hohlraum physics

    Full text link
    Some of our recent studies on hohlraum physics are presented, mainly including simulation study on hohlraum physics experiments on SGIII prototype, the design of Au + U + Au sandwich hohlraum for ignition target, and an initial design of elliptical hohlraum and pertinent drive laser power in order to generate an ignition radiation profile

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Performance and Energy Utilization Efficiency of an Expanded Granular Sludge Bed Reactor in the Treatment of Cassava Alcohol Wastewater

    No full text
    In recent years, expanded granular sludge blanket (EGSB) reactor has been widely used in the treatment of high-concentration organic wastewater, but its research mainly focused on treatment efficiency and microbial community composition. There were few studies on the relationship of operation conditions and energy utilization efficiency. Therefore, the methanogenic characteristics and energy utilization efficiency of EGSB reactor were studied by using cassava alcohol wastewater (CAW) as a raw material at (36 ± 1) °C. The results show that the degradation of volatile fatty acids (VFAs) is an important step affecting methane generation compared to the hydrolysis stage. When organic load rate (OLR) was 12.73 gCOD/L·d, the chemical oxygen demand (COD) removal rate was above 95%, the methane production efficiency of raw material was 202.73 mLCH4/ gCOD·d, the four-stage conversion efficiency was the highest, and the energy utilization efficiency was 62.26%, which was the optimal stage for EGSB reactor to treat CAW. These findings support high-efficiency bioenergy recovery from CAW in practice and highlight the potential wide application of high-performance anaerobic reactors for CAW

    The anammox process at typical feast-famine states : reactor performance, sludge activity and microbial community

    No full text
    Anaerobic ammonium oxidation (Anammox) is a chemolithotrophic bioprocess which has been widely applied in the treatment of different concentrations of ammonium-containing wastewaters. However, there is less attention on the problem that the instantaneous growth rate (or metabolic rate) and equilibrium growth rate were un-synchronous for anammox bacteria due to their long generation time and self-immobilization of the granular sludge which could lead to the inaccurate estimation. In this study, the anammox process was firstly divided to four typical feast-famine (starvation, satiation, tolerance and poison) states based on the combination of both off-site and in-situ anammox reaction kinetics. Then, four respective lab-scale bioreactors were operated at each state for over a year to achieve stable anammox performance. The results showed that the nitrogen removal rates of bioreactors were 0.53, 2.24, 9.30 and 12.96 kg N/(m³·d); and the specific anammox activities of granular sludge were 188.94 (48%), 313.29 (79%), 397.50 (100%) and 198.60 (50%) mg N/(g VSS·d) which could reflect the reactivity of each feast-famine state. The stable microbial communities of bioreactors were cultured and analyzed, whose species diversity went down with the decrease of Shannon and ACE index. The relative abundance of anammox bacteria increased from 11% to 57% from starvation to poison state. Candidatus Brocadia/Nitrospira, Candidatus Kuenenia and Brocadiaceae unclassified were revealed to be the distinctive functional bacteria, which could serve as the indicator of each state. The setting up of the typical feast-famine states could be regarded as the landmark to help the design, control and optimization of anammox process.This research was financially supported by the National Natural Science Foundation of China (51578484 and 51778563) and Research Funds for Central Universities (2017xzzx010-03). Major Scientific and Technological Specialized Project of Zhejiang Province (2015C03013) and Key Research and Development program of Zhejiang Province (2018C03031) were also gratefully thanked
    corecore