206 research outputs found

    Correction to: A comprehensive fungi-specific 18S rRNA gene sequence primer toolkit suited for diverse research issues and sequencing platforms

    Get PDF
    Following publication of the original article [1], we have been notified that three of the primer names identified as most promising candidates for fungal community surveys were incorrectly renamed following the primer nomenclature system proposed by Gargas &amp; DePriest [2].</jats:p

    DNA- and RNA- Derived Fungal Communities in Subsurface Aquifers Only Partly Overlap but React Similarly to Environmental Factors

    Get PDF
    Recent advances in high-throughput sequencing (HTS) technologies have revolutionized our understanding of microbial diversity and composition in relation to their environment. HTS-based characterization of metabolically active (RNA-derived) and total (DNA-derived) fungal communities in different terrestrial habitats has revealed profound differences in both richness and community compositions. However, such DNA- and RNA-based HTS comparisons are widely missing for fungal communities of groundwater aquifers in the terrestrial biogeosphere. Therefore, in this study, we extracted DNA and RNA from groundwater samples of two pristine aquifers in the Hainich CZE and employed paired-end Illumina sequencing of the fungal nuclear ribosomal internal transcribed spacer 2 (ITS2) region to comprehensively test difference/similarities in the “total” and “active” fungal communities. We found no significant differences in the species richness between the DNA- and RNA-derived fungal communities, but the relative abundances of various fungal operational taxonomic units (OTUs) appeared to differ. We also found the same set of environmental parameters to shape the “total” and “active” fungal communities in the targeted aquifers. Furthermore, our comparison also underlined that about 30%–40% of the fungal OTUs were only detected in RNA-derived communities. This implies that the active fungal communities analyzed by HTS methods in the subsurface aquifers are actually not a subset of supposedly total fungal communities. In general, our study highlights the importance of differentiating the potential (DNA-derived) and expressed (RNA-derived) members of the fungal communities in aquatic ecosystems

    Can We Use Functional Annotation of Prokaryotic Taxa (FAPROTAX) to Assign the Ecological Functions of Soil Bacteria?

    Get PDF
    FAPROTAX is a promising tool for predicting ecological relevant functions of bacterial and archaeal taxa derived from 16S rRNA amplicon sequencing. The database was initially developed to predict the function of marine species using standard microbiological references. This study, however, has attempted to access the application of FAPROTAX in soil environments. We hypothesized that FAPROTAX was compatible with terrestrial ecosystems. The potential use of FAPROTAX to assign ecological functions of soil bacteria was investigated using meta-analysis and our newly designed experiments. Soil samples from two major terrestrial ecosystems, including agricultural land and forest, were collected. Bacterial taxonomy was analyzed using Illumina sequencing of the 16S rRNA gene and ecological functions of the soil bacteria were assigned by FAPROTAX. The presence of all functionally assigned OTUs (Operation Taxonomic Units) in soil were manually checked using peer-reviewed articles as well as standard microbiology books. Overall, we showed that sample source was not a predominant factor that limited the application of FAPROTAX, but poor taxonomic identification was. The proportion of assigned taxa between aquatic and non-aquatic ecosystems was not significantly different (p &gt; 0.05). There were strong and significant correlations (&sigma; = 0.90&ndash;0.95, p &lt; 0.01) between the number of OTUs assigned to genus or order level and the number of functionally assigned OTUs. After manual verification, we found that more than 97% of the FAPROTAX assigned OTUs have previously been detected and potentially performed functions in agricultural and forest soils. We further provided information regarding taxa capable of N-fixation, P and K solubilization, which are three main important elements in soil systems and can be integrated with FAPROTAX to increase the proportion of functionally assigned OTUs. Consequently, we concluded that FAPROTAX can be used for a fast-functional screening or grouping of 16S derived bacterial data from terrestrial ecosystems and its performance could be enhanced through improving the taxonomic and functional reference databases

    Experimental Evidence of Functional Group-Dependent Effects of Tree Diversity on Soil Fungi in Subtropical Forests

    Get PDF
    Deconvoluting the relative contributions made by specific biotic and abiotic drivers to soil fungal community compositions facilitates predictions about the functional responses of ecosystems to environmental changes, such as losses of plant diversity, but it is hindered by the complex interactions involved. Experimental assembly of tree species allows separation of the respective effects of plant community composition (biotic components) and soil properties (abiotic components), enabling much greater statistical power than can be achieved in observational studies. We therefore analyzed these contributions by assessing, via pyrotag sequencing of the internal transcribed spacer (ITS2) rDNA region, fungal communities in young subtropical forest plots included in a large experiment on the effects of tree species richness. Spatial variables and soil properties were the main drivers of soil fungal alpha and beta-diversity, implying strong early-stage environmental filtering and dispersal limitation. Tree related variables, such as tree community composition, significantly affected arbuscular mycorrhizal and pathogen fungal community structure, while differences in tree host species and host abundance affected ectomycorrhizal fungal community composition. At this early stage of the experiment, only a limited amount of carbon inputs (rhizodeposits and leaf litter) was being provided to the ecosystem due to the size of the tree saplings, and persisting legacy effects were observed. We thus expect to find increasing tree related effects on fungal community composition as forest development proceeds

    Land-Use Intensity Rather Than Plant Functional Identity Shapes Bacterial and Fungal Rhizosphere Communities

    Get PDF
    The rhizosphere encompasses the soil surrounding the surface of plants’ fine roots. Accordingly, the microbiome present is influenced by both soil type and plant species. Furthermore, soil microbial communities respond to land-use intensity due to the effects on soil conditions and plant performance. However, there is limited knowledge about the impact of grassland management practices under field conditions on the composition of both bacteria and fungi in the rhizosphere of different plant functional groups. In spring 2014 we planted four phytometer species, two forbs (Plantago lanceolata, Achillea millefolium) and two grasses (Dactylis glomerata, Arrhenatherum elatius) into 13 permanent experimental grassland plots, differing in management. After 6 months, rhizosphere and bulk soil associated with the phytometer plants were sampled, microbial genomic DNA was extracted and bacterial 16S and fungal ITS rDNA were sequenced using Illumina MiSeq. Our study revealed that the rhizosphere microbial community was more diverse than the bulk soil community. There were no differences in microbial community composition between the two plant functional groups, but a clear impact of root traits and edaphic conditions. Land-use intensity strongly affected plant productivity, neighboring plant richness and edaphic conditions, especially soil C/N ratio, which in turn had a strong influence on root traits and thereby explained to large extent microbial community composition. Rhizosphere microbes were mainly affected by abiotic factors, in particular by land-use intensity, while plant functional type had only subordinate effects. Our study provides novel insights into the assembly of rhizosphere bacterial and fungal communities in response to land-use intensity and plant functional groups in managed grassland ecosystems

    Unraveling spatiotemporal variability of arbuscular mycorrhizal fungi in a temperate grassland plot

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Goldmann, K., Boeddinghaus, R. S., Klemmer, S., Regan, K. M., Heintz-Buschart, A., Fischer, M., Prati, D., Piepho, H., Berner, D., Marhan, S., Kandeler, E., Buscot, F., & Wubet, T. Unraveling spatiotemporal variability of arbuscular mycorrhizal fungi in a temperate grassland plot. Environmental Microbiology, 22(3),(2020): 873-888, doi:10.1111/1462-2920.14653.Soils provide a heterogeneous environment varying in space and time; consequently, the biodiversity of soil microorganisms also differs spatially and temporally. For soil microbes tightly associated with plant roots, such as arbuscular mycorrhizal fungi (AMF), the diversity of plant partners and seasonal variability in trophic exchanges between the symbionts introduce additional heterogeneity. To clarify the impact of such heterogeneity, we investigated spatiotemporal variation in AMF diversity on a plot scale (10 × 10 m) in a grassland managed at low intensity in southwest Germany. AMF diversity was determined using 18S rDNA pyrosequencing analysis of 360 soil samples taken at six time points within a year. We observed high AMF alpha‐ and beta‐diversity across the plot and at all investigated time points. Relationships were detected between spatiotemporal variation in AMF OTU richness and plant species richness, root biomass, minimal changes in soil texture and pH. The plot was characterized by high AMF turnover rates with a positive spatiotemporal relationship for AMF beta‐diversity. However, environmental variables explained only ≈20% of the variation in AMF communities. This indicates that the observed spatiotemporal richness and community variability of AMF was largely independent of the abiotic environment, but related to plant properties and the cooccurring microbiome.We thank the managers of the three Exploratories, Kirsten Reichel‐Jung, Swen Renner, Katrin Hartwich, Sonja Gockel, Kerstin Wiesner, and Martin Gorke for their work in maintaining the plot and project infrastructure; Christiane Fischer and Simone Pfeiffer for giving support through the central office, Michael Owonibi and Andreas Ostrowski for managing the central data base, and Eduard Linsenmair, Dominik Hessenmöller, Jens Nieschulze, Ernst‐Detlef Schulze, Wolfgang W. Weisser and the late Elisabeth Kalko for their role in setting up the Biodiversity Exploratories project. The work has been funded by the DFG Priority Program 1374 ‘Infrastructure‐Biodiversity‐Exploratories’ (BU 941/22‐1, BU 941/22‐3, KA 1590/8‐2, KA 1590/8‐3). Field work permits were issued by the responsible state environmental office of Baden‐Württemberg (according to § 72 BbgNatSchG). Likewise, we kindly thank Beatrix Schnabel, Melanie Günther and Sigrid Härtling for 454 sequencing in Halle. AHB gratefully acknowledges the support of the German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig funded by the German Research Foundation (FZT 118). Authors declare no conflict of interests

    Life on the Rocks: First Insights Into the Microbiota of the Threatened Aquatic Rheophyte Hanseniella heterophylla

    Get PDF
    Little is known about microbial communities of aquatic plants despite their crucial ecosystem function in aquatic ecosystems. Here, we analyzed the microbiota of an aquatic rheophyte, Hanseniella heterophylla , growing at three areas differing in their degree of anthropogenic disturbance in Thailand employing a metabarcoding approach. Our results show that diverse taxonomic and functional groups of microbes colonize H. heterophylla . Proteobacteria, Actinobacteria, Dothideomycetes, and Sordariomycetes form the backbone of the microbiota. Surprisingly, the beneficial microbes reported from plant microbiomes in terrestrial habitats, such as N-fixing bacteria and ectomycorrhizal fungi, were also frequently detected. We showed that biofilms for attachment of H. heterophylla plants to rocks may associate with diverse cyanobacteria (distributed in eight families, including Chroococcidiopsaceae, Coleofasciculaceae, Leptolyngbyaceae, Microcystaceae, Nostocaceae, Phormidiaceae, Synechococcaceae, and Xenococcaceae) and other rock biofilm-forming bacteria (mainly Acinetobacter , Pseudomonas , and Flavobacterium ). We found distinct community compositions of both bacteria and fungi at high and low anthropogenic disturbance levels regardless of the study areas. In the highly disturbed area, we found strong enrichment of Gammaproteobacteria and Tremellomycetes coupled with significant decline of total bacterial OTU richness. Bacteria involved with sulfamethoxazole (antibiotic) degradation and human pathogenic fungi ( Candida , Cryptococcus , Trichosporon , and Rhodotorula ) were exclusively detected as indicator microorganisms in H. heterophylla microbiota growing in a highly disturbed area, which can pose a major threat to human health. We conclude that aquatic plant microbiota are sensitive to anthropogenic disturbance. Our results also unravel the potential use of this plant as biological indicators in remediation or treatment of such disturbed ecosystems

    Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest

    Get PDF
    Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest
    corecore