7,372 research outputs found

    Formal Availability Analysis using Theorem Proving

    Full text link
    Availability analysis is used to assess the possible failures and their restoration process for a given system. This analysis involves the calculation of instantaneous and steady-state availabilities of the individual system components and the usage of this information along with the commonly used availability modeling techniques, such as Availability Block Diagrams (ABD) and Fault Trees (FTs) to determine the system-level availability. Traditionally, availability analyses are conducted using paper-and-pencil methods and simulation tools but they cannot ascertain absolute correctness due to their inaccuracy limitations. As a complementary approach, we propose to use the higher-order-logic theorem prover HOL4 to conduct the availability analysis of safety-critical systems. For this purpose, we present a higher-order-logic formalization of instantaneous and steady-state availability, ABD configurations and generic unavailability FT gates. For illustration purposes, these formalizations are utilized to conduct formal availability analysis of a satellite solar array, which is used as the main source of power for the Dong Fang Hong-3 (DFH-3) satellite.Comment: 16 pages. arXiv admin note: text overlap with arXiv:1505.0264

    On the complexity of color-avoiding site and bond percolation

    Full text link
    The mathematical analysis of robustness and error-tolerance of complex networks has been in the center of research interest. On the other hand, little work has been done when the attack-tolerance of the vertices or edges are not independent but certain classes of vertices or edges share a mutual vulnerability. In this study, we consider a graph and we assign colors to the vertices or edges, where the color-classes correspond to the shared vulnerabilities. An important problem is to find robustly connected vertex sets: nodes that remain connected to each other by paths providing any type of error (i.e. erasing any vertices or edges of the given color). This is also known as color-avoiding percolation. In this paper, we study various possible modeling approaches of shared vulnerabilities, we analyze the computational complexity of finding the robustly (color-avoiding) connected components. We find that the presented approaches differ significantly regarding their complexity.Comment: 14 page

    Stimulated emission of polarization-entangled photons

    Get PDF
    Entangled photon pairs -- discrete light quanta that exhibit non-classical correlations -- play a crucial role in quantum information science (for example in demonstrations of quantum non-locality and quantum cryptography). At the macroscopic optical field level non-classical correlations can also be important, as in the case of squeezed light, entangled light beams and teleportation of continuous quantum variables. Here we use stimulated parametric down-conversion to study entangled states of light that bridge the gap between discrete and macroscopic optical quantum correlations. We demonstrate experimentally the onset of laser-like action for entangled photons. This entanglement structure holds great promise in quantum information science where there is a strong demand for entangled states of increasing complexity.Comment: 5 pages, 4 figures, RevTeX

    Seeing two faces together: preference formation in humans and rhesus macaques

    Get PDF
    Humans, great apes and old world monkeys show selective attention to faces depending on conspecificity, familiarity, and social status supporting the view that primates share similar face processing mechanisms. Although many studies have been done on face scanning strategy in monkeys and humans, the mechanisms influencing viewing preference have received little attention. To determine how face categories influence viewing preference in humans and rhesus macaques (Macaca mulatta), we performed two eye-tracking experiments using a visual preference task whereby pairs of faces from different species were presented simultaneously. The results indicated that viewing time was significantly influenced by the pairing of the face categories. Humans showed a strong bias towards an own-race face in an Asian–Caucasian condition. Rhesus macaques directed more attention towards non-human primate faces when they were paired with human faces, regardless of the species. When rhesus faces were paired with faces from Barbary macaques (Macaca sylvanus) or chimpanzees (Pan troglodytes), the novel species’ faces attracted more attention. These results indicate that monkeys’ viewing preferences, as assessed by a visual preference task, are modulated by several factors, species and dominance being the most influential

    Transfer Functions for Protein Signal Transduction: Application to a Model of Striatal Neural Plasticity

    Get PDF
    We present a novel formulation for biochemical reaction networks in the context of signal transduction. The model consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select a set of 'source' species, which receive input signals. Signals are transmitted to all other species in the system (the 'target' species) with a specific delay and transmission strength. The delay is computed as the maximal reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system. The transmission strength is the concentration change of the target species. The computed input-output transfer functions can be stored in a matrix, fitted with parameters, and recalled to build discrete dynamical models. By separating reaction time and concentration we can greatly simplify the model, circumventing typical problems of complex dynamical systems. The transfer function transformation can be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant insight, while remaining an executable dynamical model for signal transduction. In particular we can deconstruct the complex system into local transfer functions between individual species. As an example, we examine modularity and signal integration using a published model of striatal neural plasticity. The modules that emerge correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. We also found that overall interconnectedness depends on the magnitude of input, with high connectivity at low input and less connectivity at moderate to high input. This general result, which directly follows from the properties of individual transfer functions, contradicts notions of ubiquitous complexity by showing input-dependent signal transmission inactivation.Comment: 13 pages, 5 tables, 15 figure

    A deeply branching thermophilic bacterium with an ancient acetyl-CoA pathway dominates a subsurface ecosystem

    Get PDF
    <div><p>A nearly complete genome sequence of <em>Candidatus</em> ‘Acetothermum autotrophicum’, a presently uncultivated bacterium in candidate division OP1, was revealed by metagenomic analysis of a subsurface thermophilic microbial mat community. Phylogenetic analysis based on the concatenated sequences of proteins common among 367 prokaryotes suggests that <em>Ca.</em> ‘A. autotrophicum’ is one of the earliest diverging bacterial lineages. It possesses a folate-dependent Wood-Ljungdahl (acetyl-CoA) pathway of CO<sub>2</sub> fixation, is predicted to have an acetogenic lifestyle, and possesses the newly discovered archaeal-autotrophic type of bifunctional fructose 1,6-bisphosphate aldolase/phosphatase. A phylogenetic analysis of the core gene cluster of the acethyl-CoA pathway, shared by acetogens, methanogens, some sulfur- and iron-reducers and dechlorinators, supports the hypothesis that the core gene cluster of <em>Ca.</em> ‘A. autotrophicum’ is a particularly ancient bacterial pathway. The habitat, physiology and phylogenetic position of <em>Ca.</em> ‘A. autotrophicum’ support the view that the first bacterial and archaeal lineages were H<sub>2</sub>-dependent acetogens and methanogenes living in hydrothermal environments.</p> </div

    Probing Mg Intercalation in the Tetragonal Tungsten Bronze Framework V₄Nb₁₈O₅₅

    Get PDF
    While commercial Li-ion batteries offer the highest energy densities of current rechargeable battery technologies, their energy storage limit has almost been achieved. Therefore, there is considerable interest in Mg batteries, which could offer increased energy densities in comparison to Li-ion batteries if a high-voltage electrode material, such as a transition-metal oxide, can be developed. However, there are currently very few oxide materials which have demonstrated reversible and efficient Mg^{2+} insertion and extraction at high voltages; this is thought to be due to poor Mg^{2+} diffusion kinetics within the oxide structural framework. Herein, the authors provide conclusive evidence of electrochemical insertion of Mg^{2+} into the tetragonal tungsten bronze V_{4}Nb_{18}O_{55}, with a maximum reversible electrochemical capacity of 75 mA h g^{–1}, which corresponds to a magnesiated composition of Mg_{4}V_{4}Nb_{18}O_{55}. Experimental electrochemical magnesiation/demagnesiation revealed a large voltage hysteresis with charge/discharge (1.12 V vs Mg/Mg^{2+}); when magnesiation is limited to a composition of Mg_{2}V_{4}Nb_{18}O_{55}, this hysteresis can be reduced to only 0.5 V. Hybrid-exchange density functional theory (DFT) calculations suggest that a limited number of Mg sites are accessible via low-energy diffusion pathways, but that larger kinetic barriers need to be overcome to access the entire structure. The reversible Mg^{2+} intercalation involved concurrent V and Nb redox activity and changes in crystal structure, as confirmed by an array of complementary methods, including powder X-ray diffraction, X-ray absorption spectroscopy, and energy-dispersive X-ray spectroscopy. Consequently, it can be concluded that the tetragonal tungsten bronzes show promise as intercalation electrode materials for Mg batteries

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer.

    Get PDF
    BackgroundT cells engineered to express chimeric antigen receptors (CARs) have established efficacy in the treatment of B-cell malignancies, but their relevance in solid tumors remains undefined. Here we report results of the first human trials of CAR-T cells in the treatment of solid tumors performed in the 1990s.MethodsPatients with metastatic colorectal cancer (CRC) were treated in two phase 1 trials with first-generation retroviral transduced CAR-T cells targeting tumor-associated glycoprotein (TAG)-72 and including a CD3-zeta intracellular signaling domain (CART72 cells). In trial C-9701 and C-9702, CART72 cells were administered in escalating doses up to 1010 total cells; in trial C-9701 CART72 cells were administered by intravenous infusion. In trial C-9702, CART72 cells were administered via direct hepatic artery infusion in patients with colorectal liver metastases. In both trials, a brief course of interferon-alpha (IFN-α) was given with each CART72 infusion to upregulate expression of TAG-72.ResultsFourteen patients were enrolled in C-9701 and nine in C-9702. CART72 manufacturing success rate was 100% with an average transduction efficiency of 38%. Ten patients were treated in CC-9701 and 6 in CC-9702. Symptoms consistent with low-grade, cytokine release syndrome were observed in both trials without clear evidence of on target/off tumor toxicity. Detectable, but mostly short-term (≤14&nbsp;weeks), persistence of CART72 cells was observed in blood; one patient had CART72 cells detectable at 48&nbsp;weeks. Trafficking to tumor tissues was confirmed in a tumor biopsy from one of three patients. A subset of patients had 111Indium-labeled CART72 cells injected, and trafficking could be detected to liver, but T cells appeared largely excluded from large metastatic deposits. Tumor biomarkers carcinoembryonic antigen (CEA) and TAG-72 were measured in serum; there was a precipitous decline of TAG-72, but not CEA, in some patients due to induction of an interfering antibody to the TAG-72 binding domain of humanized CC49, reflecting an anti-CAR immune response. No radiologic tumor responses were observed.ConclusionThese findings demonstrate the relative safety of CART72 cells. The limited persistence supports the incorporation of co-stimulatory domains in the CAR design and the use of fully human CAR constructs to mitigate immunogenicity
    corecore