250 research outputs found

    An integrated framework for user modeling using deep learning on a data monetization platform

    Get PDF
    This paper presents a novel approach to privacy-preserving user modeling for digital marketing campaigns using deep learning techniques on a data monetization platform, which enables users to maintain control over their personal data while allowing marketers to identify suitable target audiences for their campaigns. The system comprises of several stages, starting with the use of representation learning on hyperbolic space to capture the latent user interests across multiple data sources with hierarchical structures. Next, Generative Adversarial Networks are employed to generate synthetic user interests from these embeddings. To ensure the privacy of user data, a Federated Learning technique is implemented for decentralized user modeling training, without sharing data with marketers. Lastly, a targeting strategy based on recommendation system is constructed to leverage the learned user interests for identifying the optimal target audience for digital marketing campaigns. Overall, the proposed approach provides a comprehensive solution for privacy-preserving user modeling for digital marketing.publishersversionpublishe

    Overexpression of SIRT1 in Mouse Forebrain Impairs Lipid/Glucose Metabolism and Motor Function

    Get PDF
    SIRT1 plays crucial roles in glucose and lipid metabolism, and has various functions in different tissues including brain. The brain-specific SIRT1 knockout mice display defects in somatotropic signaling, memory and synaptic plasticity. And the female mice without SIRT1 in POMC neuron are more sensitive to diet-induced obesity. Here we created transgenic mice overexpressing SIRT1 in striatum and hippocampus under the control of CaMKIIα promoter. These mice, especially females, exhibited increased fat accumulation accompanied by significant upregulation of adipogenic genes in white adipose tissue. Glucose tolerance of the mice was also impaired with decreased Glut4 mRNA levels in muscle. Moreover, the SIRT1 overexpressing mice showed decreased energy expenditure, and concomitantly mitochondria-related genes were decreased in muscle. In addition, these mice showed unusual spontaneous physical activity pattern, decreased activity in open field and rotarod performance. Further studies demonstrated that SIRT1 deacetylated IRS-2, and upregulated phosphorylation level of IRS-2 and ERK1/2 in striatum. Meanwhile, the neurotransmitter signaling in striatum and the expression of endocrine hormones in hypothalamus and serum T3, T4 levels were altered. Taken together, our findings demonstrate that SIRT1 in forebrain regulates lipid/glucose metabolism and motor function

    A Framework of Non-Orthogonal Slotted Aloha (NOSA) Protocol for TDMA-Based Random Multiple Access in IoT-Oriented Satellite Networks

    Get PDF
    There is an urgent demand for massive machine-type terminals to have access into time-division multiple access (TDMA)-based satellite networks by means of random multiple access (RMA). Several RMA protocols have been proposed by exploiting packet repetitions and interference cancellation to achieve high throughput. In this paper, a framework of non-orthogonal slotted aloha (NOSA) protocol is reported to achieve even higher throughput. With a specifically designed tile-based frame structure, it introduces the intra-tile sparse mapping as a special kind of pre-coded packet repetitions and exploits the joint multi-packet detection to blindly detect superimposed packets. By further employing inter-tile packet repetitions and interference cancellation, the NOSA protocol is able to achieve high throughput with affordable complexity while keeping the same transmission efficiency as and comparable power consumptions to available protocols. Simulation results show that the NOSA prototype has the potential in providing RMA for massive machine-type terminals in practical TDMA-based satellite networks

    Parental LTRs Are Important in a Construct of a Stable and Efficient Replication-Competent Infectious Molecular Clone of HIV-1 CRF08_BC

    Get PDF
    Circulating recombinant forms (CRFs) of HIV-1 have been identified in southern China in recent years. CRF08_BC is one of the most predominant subtypes circulating in China. In order to study HIV subtype biology and to provide a tool for biotechnological applications, the first full-length replication-competent infectious molecular clone harboring CRF08_BC is reported. The construction of this clone pBRGX indicates that a moderate-copy number vector is required for its amplification in E. coli. In addition, it is shown that the parental CRF08_BC LTRs are important for generating this efficient replication-competent infectious clone. These observations may aid in the construction of infectious clones from other subtypes. Both the pBRGX-derived virus and its parental isolate contain CCR5 tropism. Their full-length genomes were also sequenced, analyzed, compared and deposited in GenBank (JF719819 and JF719818, respectively). The availability of pBRGX as the first replication-competent molecular clone of CRF08_BC provides a useful tool for a wide range of studies of this newly emergent HIV subtype, including the development of HIV vaccine candidates, antiviral drug screening and drug resistance analysis

    Complete genome analysis of a novel E3-partial-deleted human adenovirus type 7 strain isolated in Southern China

    Get PDF
    Human adenovirus (HAdV) is a causative agent of acute respiratory disease, which is prevalent throughout the world. Recently there are some reports which found that the HAdV-3 and HAdV-5 genomes were very stable across 50 years of time and space. But more and more recombinant genomes have been identified in emergent HAdV pathogens and it is a pathway for the molecular evolution of types. In our paper, we found a HAdV-7 GZ07 strain isolated from a child with acute respiratory disease, whose genome was E3-partial deleted. The whole genome was 32442 bp with 2864 bp deleted in E3 region and was annotated in detail (GenBank: HQ659699). The growth character was the same as that of another HAdV-7 wild strain which had no gene deletion. By comparison with E3 regions of the other HAdV-B, we found that only left-end two proteins were remained: 12.1 kDa glycoprotein and 16.1 kDa protein. E3 MHC class I antigen-binding glycoprotein, hypothetical 20.6 kDa protein, 20.6 kDa protein, 7.7 kDa protein., 10.3 kDa protein, 14.9 kDa protein and E3 14.7 kDa protein were all missing. It is the first report about E3 deletion in human adenovirus, which suggests that E3 region is also a possible recombination region in adenovirus molecular evolution

    Nanopore-patterned CuSe drives the realization of PbSe-CuSe lateral heterostructure

    Full text link
    Monolayer PbSe has been predicted to be a two-dimensional (2D) topological crystalline insulator (TCI) with crystalline symmetry-protected Dirac-cone-like edge states. Recently, few-layered epitaxial PbSe has been grown on the SrTiO3 substrate successfully, but the corresponding signature of the TCI was only observed for films not thinner than seven monolayers, largely due to interfacial strain. Here, we demonstrate a two-step method based on molecular beam epitaxy for the growth of the PbSe-CuSe lateral heterostructure on the Cu(111) substrate, in which we observe a nanopore patterned CuSe layer that acts as the template for lateral epitaxial growth of PbSe. This further results in a monolayer PbSe-CuSe lateral heterostructure with an atomically sharp interface. Scanning tunneling microscopy and spectroscopy measurements reveal a four-fold symmetric square lattice of such monolayer PbSe with a quasi-particle band gap of 1.8 eV, a value highly comparable with the theoretical value of freestanding PbSe. The weak monolayer-substrate interaction is further supported by both density functional theory (DFT) and projected crystal orbital Hamilton population, with the former predicting the monolayer's anti-bond state to reside below the Fermi level. Our work demonstrates a practical strategy to fabricate a high-quality in-plane heterostructure, involving a monolayer TCI, which is viable for further exploration of the topology-derived quantum physics and phenomena in the monolayer limit.Comment: 26 pagres, 6 Figure

    Biomimetic nanotherapies: red blood cell based core-shell structured nanocomplexes for atherosclerosis management

    Get PDF
    Cardiovascular disease is the leading cause of mortality worldwide. Atherosclerosis, one of the most common forms of the disease, is characterized by a gradual formation of atherosclerotic plaque, hardening, and narrowing of the arteries. Nanomaterials can serve as powerful delivery platforms for atherosclerosis treatment. However, their therapeutic efficacy is substantially limited in vivo due to nonspecific clearance by the mononuclear phagocytic system. In order to address this limitation, rapamycin (RAP)‐loaded poly(lactic‐co‐glycolic acid) (PLGA) nanoparticles are cloaked with the cell membrane of red blood cells (RBCs), creating superior nanocomplexes with a highly complex functionalized bio‐interface. The resulting biomimetic nanocomplexes exhibit a well‐defined “core–shell” structure with favorable hydrodynamic size and negative surface charge. More importantly, the biomimetic nature of the RBC interface results in less macrophage‐mediated phagocytosis in the blood and enhanced accumulation of nanoparticles in the established atherosclerotic plaques, thereby achieving targeted drug release. The biomimetic nanocomplexes significantly attenuate the progression of atherosclerosis. Additionally, the biomimetic nanotherapy approach also displays favorable safety properties. Overall, this study demonstrates the therapeutic advantages of biomimetic nanotherapy for atherosclerosis treatment, which holds considerable promise as a new generation of drug delivery system for safe and efficient management of atherosclerosis
    corecore