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Abstract
This paper presents a novel approach to privacy-preserving user modeling for digital 
marketing campaigns using deep learning techniques on a data monetization plat-
form, which enables users to maintain control over their personal data while allow-
ing marketers to identify suitable target audiences for their campaigns. The system 
comprises of several stages, starting with the use of representation learning on 
hyperbolic space to capture the latent user interests across multiple data sources with 
hierarchical structures. Next, Generative Adversarial Networks are employed to gen-
erate synthetic user interests from these embeddings. To ensure the privacy of user 
data, a Federated Learning technique is implemented for decentralized user mod-
eling training, without sharing data with marketers. Lastly, a targeting strategy based 
on recommendation system is constructed to leverage the learned user interests for 
identifying the optimal target audience for digital marketing campaigns. Overall, the 
proposed approach provides a comprehensive solution for privacy-preserving user 
modeling for digital marketing.
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1  Introduction

Today, the use of personal data has become a critical aspect of digital market-
ing campaigns to both businesses and consumers [15, 26, 52]. For businesses, it 
enables them to create targeted campaigns that are more likely to result in con-
versions, by delivering the right message to the right people [9]. Personal data 
can also be used to gain valuable insights into consumer behavior, preferences, 
and trends, which can be used to inform business decisions and improve products 
and services [16, 30]. For consumers, personalized and relevant advertising can 
be more engaging and helpful, making it more likely that they will make a pur-
chase or engage with a brand [26]. Additionally, the use of personal data can lead 
to more personalized experiences, such as tailored recommendations and promo-
tions, which can enhance the overall customer experience [30]. However, con-
sumers are becoming more privacy savvy and concerned about the lack of control 
over their personal information [1], while big tech companies achieve competi-
tive advantage through getting empowered from the “free access” of user data 
[3]. Furthermore, consumers increasingly realize financial value of their data, 
and they may demand tangible returns. Anecdotal evidence shows that customer’s 
personal email address could be worth about $90 to a brand [24]. In response, pri-
vacy regulations such as European Union’s General Data Protection Regulation 
(GDPR) and California Consumer Privacy Act (CCPA) have mandated digital 
marketing to protect consumer privacy by restricting companies’ ability to collect 
personal data [47]. This has significant implications to digital marketing practices 
[36], e.g., influence the effectiveness of targeted marketing [20] and changes in 
market structure [47], and leads marketers to explore alternative avenues to col-
lect and analyze consumer data in compliance to regulations.

A new type of data monetization platform has emerged to facilitate the trade of 
granular personal information between consumers and marketers for mutual ben-
efits [28]. From two-sided market perspective, these platforms essentially allow 
consumers and marketers to perform data sharing activities as commercial trans-
actions [7]. As such, this type of platform may not only add new data-based busi-
ness model to the existing data monetization framework [44, 46], but also help 
build the path for tangible value co-creation [55]. [22] showcase several recent 
examples that offer cash or discounts to consumers in exchange for their demo-
graphic and behavioral data. To facilitate the data-based innovation and revenue 
generation, data monetization platforms need to 1) devise effective data govern-
ance strategies, such as pricing and information disclosure policies to ensure 
trusted transactions between consumer and marketers [40, 48]; 2) perform user 
modeling and generate meaningful representation from the collected data [13]; 
and provide technological solution to resolve privacy issues [23, 27].

This study was conducted in collaboration with a European data monetization 
platform aimed at helping European Union (EU) citizens better manage and mon-
etize their data while complying with EU digital laws, particularly the General 
Data Protection Regulation (GDPR). The platform was developed as a mobile 
app, giving users complete control over how their data are collected, used, and 
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protected online. On the one hand, the app allows users to opt-in to share their 
data for fair compensation and receive marketing promotions. On the other hand, 
marketers can use the platform to target the right users by matching campaigns 
with user interests.

This research aims to help the platform improve its marketplace for both users 
and marketers while ensuring compliance with data privacy regulations. The pro-
posed approach provides a comprehensive solution for privacy-preserving user mod-
eling for digital marketing campaigns. By incorporating hierarchical user interests 
into hyperbolic space using hyperbolic embeddings, we can represent consumer 
behavior patterns across multiple data sources. To protect consumer privacy, syn-
thesized user representations are generated using the Generative Adversarial Net-
works (GAN) technique, which approximates user interests while maintaining indis-
tinguishability from the original ones. The training process is performed through 
Federated Learning (FL), a distributed learning method, which leverages data pri-
vacy and communication efficiency. The proposed solution enables the platform to 
identify the target audience that matches the right campaign while complying with 
data privacy regulations and giving users control over their data. By specifying con-
sumer characteristics such as interests, demographics, or online behavior, marketers 
can create a list of users for each campaign, targeting not only the users that meet the 
campaign requirements but also those who are more likely to accept the offer.

The importance of data privacy and protection cannot be overstated in the context 
of digital marketing [36]. The proposed approach aims to protect users’ personal 
data while allowing marketers to identify suitable target audiences for their cam-
paigns. As a result, this study contributes to the field of e-commerce marketing by 
providing a privacy-preserving user modeling mechanism that benefits both consum-
ers and marketers, because it balances the competing interests of personalization and 
data privacy. By utilizing advanced deep learning techniques, such as representation 
learning on hyperbolic space, GAN and FL, the proposed approach effectively cap-
tures latent user interests and generates synthetic representations, without compro-
mising user privacy. This ensures compliance with data privacy regulations, while 
still allowing for accurate targeting and personalization of marketing campaigns.

The paper is organized as follows. Section 2 summarize the related work that cov-
ers a range of topics on representation learning for hierarchical user data, privacy-
preserving machine learning approaches using GAN and FL and matching users 
with campaign with a recommender system. Section 3 provide step-by-step explana-
tions in the system design. Section 4 describe the data used in this study from the 
collaborating data monetization platform and results from each step of the proposed 
approach. Section 5 discuss the business implications and conclude.

2 � Related work

2.1 � Representation learning for hierarchical user data

The primary objective of representation learning is to capture meaningful features 
from raw data to represent them in a more efficient and informative manner. In the 
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context of digital marketing campaigns, users often exhibit hierarchical structures 
in their interests and behaviors. The challenge lies in representing such hierarchical 
user data in a low-dimensional space while preserving their hierarchical relation-
ships and similarities. For example, digital marketing accounts on popular platforms 
such as Facebook, Instagram, TikTok are typically assigned with multi-level cat-
egories to help users search and understand business [41]. Thus, extracting knowl-
edge from hierarchical data from users’ Facebook profiles that detail their interests 
in terms of likes to Facebook pages would require meaningful representations of 
hierarchical structure.

Hyperbolic embeddings have emerged as a powerful solution to address this chal-
lenge [37]. Unlike traditional Euclidean geometry, hyperbolic geometry is better 
suited for modeling complex networks with hierarchical data structures, as it can 
capture high-quality hierarchy information in a lower-dimensional space with mini-
mal distortion [6]. This is due to the constant negative curvature of the hyperbolic 
space, which allows the area of a circle or volume of a sphere to expand exponen-
tially with its radius. Consequently, the distances between objects in hyperbolic 
space are well preserved, providing a measure of their similarity and reflecting their 
semantic or functional relationships.

An example application of hyperbolic embeddings can be found in modeling 
users’ hierarchical interests derived from their social media activities, such as Face-
book profiles. By capturing users’ likes and interactions with Facebook pages, a 
hierarchical representation of their interests can be constructed. The Poincaré ball 
model, a popular hyperbolic space, has been employed to learn hierarchical rep-
resentations as it effectively preserves distances between categories and hierarchy 
in the data [37]. The utility of Poincaré embeddings is evident in their ability to 
preserve original graph distances, capturing the hierarchy of objects through their 
norm, as demonstrated in the Eq. 1 below:

Equation 1 Formula of distance on Hyperbolic Space.

2.2 � Machine learning approaches for privacy‑preserving with GAN

Privacy preservation is a crucial concern when dealing with sensitive user data, par-
ticularly in domains vulnerable to data leakage threats. Traditional privacy protec-
tion techniques, such as deidentification techniques (k-anonymization, l-diversity, 
and k-closeness), removal of personal identification values, and alteration of quasi-
identifiers, have been found to be insufficient due to their inherent limitations [23]. 
These limitations include attackers’ potential ability to retrieve private information 
when they possess background knowledge and the negative impact on the utility of 
the released data [2].

Generative Adversarial Networks (GANs) have emerged as a promising solu-
tion to address these challenges [21]. GANs have demonstrated a significant 
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breakthrough in synthesizing high-quality artificial samples that closely resem-
ble the distribution of the original training data, making it difficult to distinguish 
between artificial and genuine data. For example, Deep Convolutional GAN 
(DCGAN) [42] generate high quality and realistic images using an adversarial pro-
cess to train two models generator and discriminator simultaneously, where the gen-
erator learns to create realistic synthetic samples from random noise, while learns 
to differentiate between real and synthetic samples. Since then, several variants of 
GAN models have been proposed to generate synthetic data beyond images [61]. As 
an adaptation of the DCGAN, table-GAN [45] aims to synthesize relational tables 
that consist of different data types and are statistically identical to the original table, 
leveraging convolutional neural networks in the process. Another notable variation 
is CTGAN [56], which aims to synthesize tabular data, consisting of continuous and 
discrete columns, using a conditional generator. CTGAN faces challenges in han-
dling imbalanced discrete columns and complex continuous columns with multiple 
nodes. Despite these challenges, CTGAN’s performance has been favorable, outper-
forming Bayesian methods on most real datasets.

As a result, GANs have been widely adopted as a privacy-preserving mechanism 
across various domains subject to privacy regulations, such as healthcare, finance, 
and more. For instance, the healthcare industry has employed GANs including 
medGAN [12] and medBGAN [8] for generating artificial patient electronic health 
records (EHRs) that maintain the statistical properties of the original data while pro-
tecting sensitive patient information. This enables researchers and practitioners to 
develop and test algorithms, models, and applications without compromising patient 
privacy [60]. Similarly, the finance industry can utilize GANs to generate synthetic 
customer datasets that can be used for portfolio analysis [62], fraud detection [18], 
and risk assessment [33], without exposing the real customer data. In both cases, 
GANs offer an effective solution for preserving privacy while still enabling the use 
of realistic and statistically similar datasets for various purposes.

2.3 � Machine learning approaches for privacy‑preserving with federated learning

In recent years, the limitations of Centralized Learning have become increasingly 
apparent in the face of growing data complexity and volume. Centralized Learn-
ing can impose a significant burden on the network responsible for exchanging vast 
amounts of data and can challenge the server’s ability to process large aggregates of 
information while ensuring data protection [14]. These issues have led to the devel-
opment of alternative systems that distribute the machine learning burden across 
numerous computers or mobile devices, such as Federated Learning.

Federated Learning (FL) enables the training of data across multiple devices, 
coordinated by one or more central servers [11, 31, 57]. This approach can address 
the conflict between data privacy and data sharing for detached devices, as the data 
is not disclosed to a central server [38, 39]. Consequently, FL is well-suited for 
applications involving privacy-sensitive data. For example, FL has been employed in 
various industries such as banking for credit card fraud detection [59], image detec-
tion and representation [34], and healthcare for disease prediction and biomedical 
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imaging analysis using health records [50]. These applications demonstrate the 
potential of FL to protect privacy while maintaining the utility of shared data [11].

In particular, FL has shown great potential in privacy-preserving training for 
mobile devices, known as on-device FL [32]. In an era where mobile devices are 
ubiquitous and generate a plethora of personal data, ensuring the privacy and con-
fidentiality of users becomes crucial. The decentralized nature of FL allows for the 
efficient utilization of data from mobile devices without compromising user privacy 
[11]. For example, FL can be applied to improve privacy-preserving mobile health 
applications. These applications require the collection and processing of sensitive 
health data from wearable devices, such as heart rate monitors and fitness trackers. 
By using on-device FL, mobile health applications can develop personalized models 
for users while maintaining their privacy [49].

3 � Methods

3.1 � Overview of the platform design

Building upon the concepts and methodologies discussed in Sect. 2, we present the 
design of the privacy-preserving platform for targeted marketing campaigns. The 
platform leverages hyperbolic embeddings, GANs, and FL to ensure privacy and 
efficiency while effectively targeting users based on their interests and preferences. 
Figure  1 illustrates the design of the platform with several key components. The 
core section demonstrates the modeling of users’ representations using the Poincaré 
Embeddings, as described in Sect. 2.1. These embeddings capture the hierarchical 
nature of users’ interests and preferences, which are then used to match them with 
the campaign that marketers initiate through a recommender system. To address 

Fig. 1   Illustration of data monetization system design
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privacy concerns, as discussed in Sects. 2.2 and 2.3, the platform incorporates GAN 
and FL techniques, shown on the left side of Fig. 1. GAN is implemented for gen-
erating synthetic user data to protect users’ data privacy, while FL is implemented 
to allow the training process to perform decentralized on the user’s own devices, 
aiming to leverage communication efficacy and defense techniques to ensure data 
privacy.

On the right side of Fig. 1, it is illustrated how the user representations are used 
to identify the target audience that matches the right campaign. When a marketer 
wants to send an offer through the platform’s mobile app, they must identify the 
target audience by specifying user characteristics such as interests, demographics, or 
online behavior. In particular, for each campaign to be conducted on the platform, a 
list of users is created so that marketers target not only the users that meet the cam-
paign requirements but also those who are more prone to accept the offer.

However, neither the marketers nor the platform would know which users may 
receive a specific campaign offer, as only the learned latent user embedding gener-
ated from synesthetic user data is used to create the list of users that matches the 
campaign offer. This is accomplished by modeling the user through a series of deep 
learning techniques detailed in the following.

3.2 � User modelling from poincaré embeddings

We utilize the Poincaré embeddings to effectively model users in a hyperbolic space, 
enabling efficient representation of hierarchical data from user characteristics and 
interests. The outcome of the Poincaré model is a set of vectors or coordinates for 
each category on the Poincaré ball, which provides valuable insights into the posi-
tion of each interest or characteristics within the space.

More specifically, each user was represented into the hyperbolic space by cal-
culating an average of their interests and characteristics, creating one unique 
n-dimensional vector as Poincaré embedding [37]. Then, the Poincaré embeddings 
of the users can be used to create target groups of users with similar characteristics 
together. This was accomplished by the PoincareKMeans [5]. Notably, the imple-
mentation of this clustering method was not based on the original version of the 
K-Means using the Euclidean distance as a similarity measure. The context of the 
hyperbolic space prohibits the use of linear spaces to determine in its most accurate 
sense comparable features without exhausting the original graph distances in non-
Euclidean space. Instead, we choose to partition users into K groups based on hyper-
bolic distances between their embeddings on the Poincaré ball. As such, we are able 
to capture the hierarchical relationship by placing users belong to the same category 
close to each other. Section 1 in Appendix provides more details on the training pro-
cess and choice of hyperparameters of the Poincaré model.

With the target groups established, we create an avatar that represents the shared 
characteristics of users within each group. This process essentially offers several 
benefits. Firstly, representing and aggregating user information to a higher level 
reduces the risk for adversaries to re-identify individual users based on their interest 
and characteristics. Secondly, despite the anonymization, the use of avatars ensures 
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that the data remains useful for marketing purposes, because marketers can still 
identify and target specific audience segments effectively. Thirdly, hierarchical user 
characteristics is naturally equipped with the Poincaré embedding representation, 
thus making the target group creation more suitable than the one generated from 
similarity metrics in Euclidean space.

3.3 � User representation synthesized using GAN

To synthesize user representations while preserving their privacy, we employ a cus-
tomized GAN architecture. As Fig.  2 shows, the principal idea of GAN remains 
the same: training two neural networks simultaneously, a Generator (G) and a Dis-
criminator (D), in a manner that G generates synthetic data resembling the original 
data distribution and D distinguishes fake data from authentic data to optimize the 
min–max loss function [32] shown in Eq. 2:

Equation 2 min–max GAN Loss Function.where pdata(x) denotes the original data 
distribution and pz(z) is the simple noise distribution (generally a normal distribu-
tion). x~pdata(x) represents the expected value in all instances of original data, and 
z~pz(z) represents the expected value over all random inputs to the Generator. Essen-
tially, the goal of the generator G is to minimize the value function V(G,D), while 
the discriminator D aims to maximize it.

More specifically, before applying the embedding methods, GAN generates 
synthetic data that is indistinguishable from the original data to protect user pri-
vacy. The training process starts by feeding random noise created by the G and 
actual data from the original dataset into the D. The D then classifies synthetic 
data as real or fake. If the classification is incorrect, the D is penalized by the dis-
criminator loss. Finally, hyperparameters are updated through backpropagation. 

(2)
min
G

max
D

V(G,D) = �x∼pdata(x)

[
logD(x)

]

+ �z∼pz(z)

[
log (1 − D(G(z)))

]

Fig. 2   Illustration of the complete system of GAN
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This process is repeated until the convergence of discriminator loss, minimizing 
the probability of making mistakes.

The G’s capacity is highly dependent on the effectiveness of the D. It cannot 
be trained independently, and an evaluation from the D is necessary to update the 
G’s hyperparameters. The G is penalized for providing a sample that the D classi-
fies as artificial. Backpropagation starts at the output of the D and returns through 
it into the G. Figure 3 illustrates the GAN training algorithm:

Fig. 3   Step-by-step illustration of GAN training algorithm

Fig. 4   Proposed GAN architecture for generator and discriminator
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Moreover, we have adapted the GAN architecture specifically for our use case. In 
particular, Fig. 4 shows the custom GAN architecture that consists of the following 
modifications. Firstly, our customized G comprises one input layer, three fully con-
nected hidden layers, and one output layer. The hidden layers use the LeakyReLU 
activation function, while the output layer uses the tanh function. These adjustments 
help capture the possible correlations between variables in user data. Secondly, the 
D in our architecture has one input layer, four fully connected hidden layers, and 
one output layer. We use the LeakyReLU activation function for all hidden layers, 
the Sigmoid function for the output layer, and Dropout to avoid overfitting. Further-
more, we employ the Adam version of stochastic gradient descent with a learning 
rate of 0.0002 and a momentum of 0.5. Section 2 in Appendix provides more details 
on the training process of the custom GAN architecture.

The GAN implementation is a critical component of this study, as it enables the 
creation of synthetic data from the original user information while preserving user 
privacy. This prevents users from being identified and ensures the confidentiality of 
their information. Together with the user modeling using hyperbolic embeddings, 
GAN-generated synthetics data maintains the underlying structure and patterns of 
original user data, by adding an extra layer of privacy protection while ensuring the 
utility of data for digital marketing purposes.

3.4 � Distributed training using federated learning

In this paper, the distributed training of the model is accomplished using a specific 
approach to FL, referred to as Partially Local Federated Learning [51]. This method 
is employed to handle situations where the model contains user-specific parameters, 
such as in matrix factorization [29]. Sending updates of user embeddings to the 
server when training a global federated model is undesirable in these cases, as it 
could expose potentially sensitive individual preferences. To address this issue, the 
model is partitioned into global and local parameters. More specifically, the matrix 
containing users’ preferences is factorized into a user and an item matrix, generating 
a k-dimensional user-specific embedding for each user. This approach ensures that 
some parameters are not transferred to the server, although it does require clients to 
maintain their user embeddings across several rounds, which can be undesirable. In 
large-scale cross-device settings, users are unlikely to be sampled more than once 
during the training process, leading to performance degradation.

To tackle this challenge, a federated reconstruction framework is utilized in this 
paper, which eliminates the need for users to keep their local parameters across 
rounds by reconstructing them as necessary. A reconstruction algorithm is employed 
to restore the local parameters. The scheme in Fig. 5 demonstrates the process: first, 
for each round, the server retains and delivers the item matrix (global parameters) 
to the sampled users. Next, using one or more stages of SGD (Stochastic Gradient 
Descent), each user freezes the item matrix and trains their user embedding (local 
variables). Subsequently, each user freezes their user embedding and trains the 
item matrix using one or more steps of SGD. Finally, updates to the item matrix are 
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collected across users, and the server copy of the item matrix is updated for use in 
the next round.

Notably, the training process in this study deviates from the typical federated 
learning process, which often employs federated averaging for federated aggrega-
tion. Instead, a reconstruction optimizer is passed to reconstruct the parameters that 
remain local, such as user embeddings. For both the server and user optimizer, the 
same SGD optimizer is used; however, the learning rates differ. Section 3 in Appen-
dix illustrates the steps of the FL training framework.

3.5 � Matching users with marketing campaigns using HyperML

The final step of the process involves leveraging the synthesized user embeddings 
and incorporating them into a recommender system model, to accurately identify 
the list of most suitable users for a given campaign offer. Given that user charac-
teristics and interest are represented by Poincaré embeddings, we adopt a tailored 
approach Hyperbolic Metric Learning (HyperML) [53], a technique that is specifi-
cally designed for recommender systems in hyperbolic space such as the manifold 
Poincaré Ball for its computations of similarities. In particular, the training process 
with HyperML takes place on the Poincaré Ball manifold, which computes distances 
in the hyperbolic space. This allows for the learning of Poincaré embeddings of 
insights, master categories, and users, and ultimately, the objective is to predict new 
users who may be interested in a specific insight or category.

Selecting the appropriate users is crucial for the success of a campaign. As such, 
it is essential to identify a user base that ensures not only will marketers target their 
offer to those most likely to accept the campaign, but also that clients receive the 
offers they need and desire. The primary goal, therefore, is to recommend users for 
a specific campaign based on their interests and personal information, using this 
uniquely devised approach.

The benefits of employing this specialized approach for matching users with 
marketing campaigns are multifold. By utilizing HyperML and the Poincaré Ball 
manifold, the recommender system can better identify suitable users for specific 

Fig. 5   Scheme of partial local federal learning adapted from [51]
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campaigns from their Poincaré embeddings, leading to improved targeting and more 
effective marketing strategies. This, in turn, can result in higher conversion rates and 
better return on investment (ROI) for marketers. Furthermore, this method allows for 
enhanced personalization of marketing campaigns, ensuring that users receive offers 
that are relevant and tailored to their needs and interests. This enhances user satis-
faction and fosters loyalty to both brand and platform.

4 � Results

4.1 � Data description

The dataset used in this paper is generated from synthetic user data modeled on 
10,000 users’ real-world Facebook profiles. This synthetic data maintains the struc-
ture and distribution of the original data while protecting user privacy. The synthetic 
dataset details users’ interests in terms of likes on Facebook pages. It is important 
to note that no actual Facebook profile data was accessed or used directly in this 
research, as the data utilized is entirely synthesized. The synthetic dataset can be 
obtained from the corresponding author upon reasonable request and subject to 
approval by the collaborating data monetization platform. Additionally, any sup-
plementary materials, including code and models, can be accessed upon reasonable 
request and with the appropriate permissions from the authors.

Each Facebook page in the synthetic dataset belongs to an intrinsic category, 
which is hierarchically organized with a 3-level depth, necessitating the considera-
tion of user interest hierarchies in user modeling. As shown in Fig. 6, an example is 
the category "Media" that contains child categories of "Music" and "Books & Mag-
azines," with the Music category further containing child categories of "Song" and 
"Album." Consequently, user interests are represented as a set of hierarchical data 
containing different levels of categories. In total, there is a total of 1563 categories.

To match users with campaigns, it is crucial to identify users with specific inter-
ests and consider their preferences:

•	 If the user has a real interest in a category, the value is 1.
•	 If the user does not have an interest (explicitly), the value is -1.

Fig. 6   Hierarchical facebook category example
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For other categories that are not assigned a value of 1 or −1, they are considered 
unknown interests (value = 0), meaning we do not know whether the user has an 
interest or not.

4.2 � Result from poincaré embeddings

Ideally, users with similar interests in the same parent category should be repre-
sented closely, which is challenging using traditional one-hot encoding in Euclidean 
space. To address this challenge, a Poincaré embedding model is adopted to learn 
user representations, transforming user interests into hyperbolic space, and calculat-
ing similarity using non-Euclidean distance.

We obtain Poincaré embeddings for all users as a set of n-dimensional vectors or 
coordinates of each category in the hyperbolic space, where n varies between 25 to 
200. To evaluate the quality of Poincaré embeddings, the same approaches were used 
as described by [37]: Reconstruction error in relation to the embedding dimension, 
which is the reconstruction of a hierarchy from the embedding to evaluate the repre-
sentation capacity; and Link prediction by splitting the data into a train, validation, 
and test set to evaluate generalization performance. We compare these tasks using 
Poincaré distance with traditional Euclidean distance d(x, y)=∥ x − y ∥2.

These two approaches can be determined by two evaluation metrics:

•	 Mean Rank: the average of the ranks for all observations within each sample.
•	 MAP: refers to Mean Average Precision, a metric that captures how well each 

vertex’s neighborhoods are preserved.

The evaluation results of the Poincaré embeddings are shown in Table  1. 
Examining the reconstruction task, we observe that Poincaré embeddings yield 
consistently better representation quality in comparison with Euclidean embed-
dings. Moreover, the quality largely increases with the dimensionality, while 
such improvement becomes marginal for 200 dimensions. Similarly, for Link Pre-
diction task, we observe better representation quality for Poincaré embeddings. 

Table 1   Evaluation of embedding quality obtained from reconstruction and link prediction tasks in 
hyperbolic space and Euclidean space

The bold indicates the optimal performance obtained from the model tasks and parameters. For Mean 
Rank, the lower the better. For MAP, the larger the better

Reconstruction Link prediction

25D 50D 100D 200D 25D 50D 100D 200D

Euclidean Mean Rank↓ 4.56 4.28 4.19 4.12 3.95 3.85 3.73 3.51
MAP↑ 0.439 0.445 0.448 0.451 0.392 0.408 0.411 0.453

Poincaré Mean Rank↓ 2.59 2.55 2.50 2.53 3.19 2.98 3.07 2.76
MAP↑ 0.534 0.534 0.536 0.54 0.413 0.418 0.416 0.538



	 Q. Han et al.

1 3

Moreover, the Mean Rank decreased from 3.2 to 2.76, and the MAP value rose 
from 0.41 to 0.538, indicating a significant improvement with the dimensional-
ity. After fine-tuning our model, the best model has the following characteristics: 
20 negative samples, 0 burn-in initialization, no regularization, 200 epochs in a 
200-dimensional space. These results demonstrate that dataset is better repre-
sented on the hyperbolic space in terms of distances between interests and pre-
serving the hierarchy of the 3 levels of categories.

Figure 7 displays the obtained embeddings of categories on the Poincaré Model 
as blue dots. The straight black lines represent the relations between the hierarchy 
levels of the categories. Additionally, the figure demonstrates that more similar 
categories should be situated closely, as in the case of "Music" and "Song."

Furthermore, to further demonstrate the representation quality of the Poincaré 
representations, we can partition all users into multiple groups with similar char-
acteristics and interests using PoincaréKMeans model. Given that PoincaréK-
Means is essentially an unsupervised learning algorithm, where the evaluation 
metrics for clustering analysis are still in development, the choice for the number 
of clusters is primarily based on domain knowledge and intuition. Figure 8 shows 
the representation of the partitions of user into 6 target groups using hyperbolic 
embeddings. Section A of Appendix shows the details of group characteristics 
from clustering analysis.

Such representations help our analysis and understanding of the characteristics 
of each group, for which it may increase the accuracy of representing categories 
for a user because the likelihood of sharing similar preferences to other users in 
the same group tend to be higher.

Fig. 7   Representation of the Poincaré embeddings in 2D
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4.3 � Results from GAN

We evaluate the performance of the GAN model by comparing the distribution of the 
original dataset with that of the synthesized dataset generated by the model. By analyz-
ing the similarities between the two datasets, we can observe that the GAN-generated 
data effectively preserves the distributional characteristics of the original data, while 
ensuring user privacy and significantly reducing the risk of data leakage. Tables 5 and 6 
in Sect. 2 of Appendix provide a comparison of the distribution for the original and the 
synthesized dataset, respectively.

The successful generation of a synthetic dataset that closely resembles the original 
data offers several advantages. Firstly, it allows for the safe application of the synthe-
sized data in the subsequent steps of the process, with minimal risk of privacy breaches. 
Secondly, even if an attacker possesses some background information about a user’s 
profile, they would be unable to extract any additional information from the synthetic 
dataset. This is because the synthesized data is generated by the GAN model and does 
not directly correspond to any real person. By achieving a balance between data utility 
and privacy preservation, the GAN model demonstrates its potential in addressing pri-
vacy concerns in sensitive data applications. Consequently, the synthesized dataset can 
be used for further analysis and modeling without compromising the privacy of users in 
the original dataset.

4.4 � Results from federated learning

The performance of the federated learning model is assessed based on the Mean 
Squared Error loss and accuracy metrics computed for each sampled user on an 
unobserved portion of local data. This calculation uses the user-item matrix and 

Fig. 8   Representation of the users into 6 clusters in Poincaré space
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the reconstructed user embedding by minimizing loss between observed ratings 
and predicted ratings as the dot product of item and user embeddings. By averag-
ing the losses and accuracies across users, we obtain the total loss and accuracy 
for the model. Table 2 illustrates the loss and accuracy results for the user-item 
matrix reconstruction trained with federated learning on the validation and test 
sets.

Here, the model demonstrates satisfactory performance, with promising poten-
tial for successful implementation in real-world applications. However, it is worth 
noting that the high accuracy scores could also imply that the sparsity in the 
matrix may have resulted in an unbalanced dataset. Despite this potential issue, 
the federated learning model can effectively train the global and reconstructed 
local parameters without requiring direct access to users’ specific information. 
This demonstrates the privacy-enhancing capabilities of the federated learning 
approach, ensuring that users’ sensitive data remains secure while still allowing 
for accurate modeling and predictions.

4.5 � Result from matching users using recommender system

Lastly, the synthesized user embeddings are incorporated into a recommender 
system model to match marketing campaigns using HyperML algorithm [53]. The 
primary goal is to recommend new users for a specific campaign based on their 
interests and personal information using their hyperbolic representations. The 
model identifies a list of users for a specific campaign offer and evaluates its per-
formance using HR@10, a metric that measures the percentage of identified top 
10 users interested in the particular campaign. Table  3 presents the evaluation 
results for matching campaigns with top 10 users at both bottom categories and 
master (root) categories:

The results show that the campaigns can be matched accurately, with over 90% of 
users likely to accept the offer. This performance enables marketers to confidently 
target their campaigns to the matched users without knowing their identities.

In summary, the GAN-generated synthetic dataset is trained to learn hyperbolic 
embeddings from hierarchical user data in a decentralized FL approach without 

Table 2   Federated learning 
from the user-item matrix 
reconstruction evaluation

Metrics Validation set Test set

Loss 0.058 0.056
Accuracy 94% 94.2%

Table 3   Recommender system 
evaluation

HR@10

Recommender system for bottom categories 0.904
Recommender system for master categories 0.965



1 3

Towards privacy‑preserving digital marketing: an integrated…

exposing sensitive user information. The hyperbolic embedding model, in turn, 
reconstructs the user-item matrix, which is then used in the recommender system to 
match marketing campaigns to potential users based on their interests and personal 
information. The combination of these methods effectively preserves user privacy 
while ensuring accurate marketing campaign targeting.

5 � Discussions and conclusions

This research presented a novel approach to privacy-preserving user modeling for 
digital marketing campaigns using deep learning techniques on a data monetiza-
tion platform. The primary goal of this study was to develop a solution that ena-
bles marketers to accurately identify suitable target audiences for their campaigns, 
while allowing users to maintain control over their personal data and ensuring com-
pliance with data privacy regulations. The proposed approach integrated represen-
tation learning on hyperbolic space, Generative Adversarial Networks (GAN), and 
Federated Learning (FL) to capture latent user interests, generate synthetic repre-
sentations, and perform decentralized training, all without sharing user data with 
marketers. By implementing a targeting strategy based on recommendation systems, 
the learned user interests were leveraged to identify the optimal target audience for 
digital marketing campaigns.

The contributions of this study include the 1) development of a privacy-preserv-
ing user modeling mechanism that balances personalization and data privacy, 2) the 
practical application of deep learning techniques for user modeling in digital mar-
keting, and 3) the exploration of new business models that facilitate value co-crea-
tion between consumers and marketers on data monetization platforms.

However, this research has several limitations. First, the Poincaré Ball model can-
not obtain the relations between categories and users, leading to potentially inac-
curate user representations. Users’ interests may change over time, which could 
affect the effectiveness of the model. Second, the GAN technique, while useful for 
generating synthetic user profiles, has limitations in generating categorical data and 
addressing imbalances in the dataset. Future research could investigate variations of 
GANs, such as medWGAN, medBGAN, and CTGAN, or experiment with differ-
ent architectures for improved results. Third, the adoption of FL techniques for data 
synthesis and decentralized training offers several advantages, including reducing 
communication constraints and adding layers of privacy protection. However, this 
method is not infallible, and limitations exist in terms of the degree of protection it 
provides. Future research could explore applications of differential privacy or secure 
aggregation to further safeguard users’ information from attacks. Fourth, the perfor-
mance of the proposed approach was evaluated using a limited set of metrics, which 
may not capture all relevant aspects of user modeling and privacy preservation. Last, 
the study was conducted in collaboration with a single data monetization platform, 
which may limit the generalizability of the findings to other platforms or contexts.

This study represents an important step towards a more transparent, ethical, and 
sustainable digital marketing ecosystem that benefits both consumers and market-
ers alike. Future research directions include (1) exploring the applicability of the 
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proposed approach to different types of online platforms and E-commerce marketing 
contexts, (2) refine the proposed architectures with advances in deep learning tech-
niques and evaluate the impact on performance, and (3) extending the evaluation 
framework to consider a broader range of metrics, such as user satisfaction, user 
privacy risk, and the potential impact on marketing outcomes. By addressing these 
limitations and building on the contributions of this study, future research can fur-
ther enhance our understanding of privacy-preserving user modeling and its impli-
cations for the digital marketing landscape.

Appendix

Section 1: poincaré model training

In the code, a function called Model was created to train the Poincaré Model, based 
on some parameters that will be evaluated in order to get the best model possible.

In this case, fine tuning was as follows:

•	 Negative: Number of negative samples to use.
•	 Size: Number of dimensions of the trained model
•	 Burn-in: Number of epochs to use for burn-in initialization (0 means no burn-in)
•	 Regularization_coeff: Coefficient used for l2-regularization while training (0 

effectively disables regularization)
•	 Epochs: hyperparameter that controls the number of complete passes through the 

training dataset.

To get the best model, the fine tuning of the parameters described above is 
needed. The values for the parameters are the following:

•	 Negatives: 10, 20;
•	 Dimensions: 5, 25, 50, 100, 200;
•	 Epochs: 50, 100, 150, 200;
•	 Burn-in: 0, 10;
•	 Regularization coeff: 0, 1;

Figure 9 illustrates the code that was built to apply these parameters. In Fig. 10, it 
is shown the best model hyperparameters (Fig. 11).
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The following tables identify the main characteristics of each cluster. The target 
groups are characterized as follows:

Cluster 1

Users are interested in Real Estate and Media, as well as arts and entertainment.

Businesses–Property

Businesses–Media/news company
Businesses–Arts & Entertainment

Cluster 2

Users are interested in commerce, sports centers, cinema, food and drink and reli-
gious places.

Businesses—Commercial & industrial

Businesses—Medical & health
Non-business places—religious
Businesses—Sports & Recreation

Fig. 9   Fine-tuning of parameters on Poincaré Model

Fig. 10   Best model parameters



	 Q. Han et al.

1 3

Businesses—Commercial & industrial

Businesses—Food & Drink

Cluster 3

Users are interested in education, finance services and technology companies.

Fig. 11   Original architecture of the GAN model
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Businesses—Education

Businesses—Finance
Businesses—Science, technology & 

engineering

Cluster 4

Users like to visit Restaurants, and are interested in cars, motorcycles and boats. 
They also like sports.

Businesses—Food & Drink

Businesses—Vehicle, aircraft and boat
Businesses—Sport & recreation
Shopping & Retail

Cluster 5

Users like all types of brands, like to buy items and travel, and like books and 
music.

Other—Brand

Businesses—Food & Drink
Businesses—Travel & Transport
Media

Cluster 6

Users are interested in Medical and health; shopping and visiting restaurants.

Businesses—Medical & health

Shopping & Retail
Businesses—Food & Drink
Sports
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Section 2: GAN training

The figure below demonstrates the original architecture of the GAN model 
(Tables 4 and 5).

In order to get reliable results on the Adversarial model, a new structure was 
implemented, as shown in Fig. 12.

The training of the GAN model encompassed the use a randomly generated 
dataset in which the one-hot encoding technique was applied, as shown in Table 
6:

Before starting the training process, a standardization was performed to the 
original data set, using the function StandardScaler from Sklearn preprocessing 
module, due to the following reasons:

1.	 Standardizing the data would accelerate the training process.

Fig. 12   New structure of GAN
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2.	 The output results range from [−1, 1] and [0, 1] for tanh and sigmoid functions, 
respectively. Thus, a standardization was performed to maintain all the parameters 
in the same order of magnitude.

After several experiments, the following values for the hyperparameters were 
chosen: n_epochs = 50, batch_size = 50 and latent_dim = 100 for the training 
process. The results are demonstrated in the next section.

Section 3: federated learning training

The underlying idea behind the figure above is the following (McMahan & Ramage, 
2016):

•	 In step A, the local device uses their training data to personalize the model, 
based on usage;

•	 In step B, many of the updates to the model, from local usage, are aggregated to 
form a consensus change, normally performed with a Federated Averaging algo-
rithm;

•	 In step C, the consensus change is share to the global model;
•	 The process repeats (Fig. 13).

Funding  Open access funding provided by FCT|FCCN (b-on). This work was funded by Fundação para 
a Ciência e a Tecnologia (UIDB/00124/2020, UIDP/00124/2020 and Social Sciences DataLab–PIN-
FRA/22209/2016), POR Lisboa and POR Norte (Social Sciences DataLab, PINFRA/22209/2016).

Fig. 13   Illustration of the federated learning framework
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