1,479 research outputs found

    The Law and Economics of Tying in Digital Platforms:Comparing Tencent and Android

    Get PDF
    Tying has become a common practice in digital platforms. It may generate both pro-competitive effects and anti-competitive effects, which makes it difficult to distinguish between lawful and unlawful tying practices. The cases of Tencent and Android both involve tying conducts, but interestingly, the cases have different outcomes. This article explores reasons for these different case outcomes from a comparative law and economics perspective. By assessing the facts and legal rulings in Tencent and Android, we find that the different case outcomes result, on the one hand, from the different case facts, and on the other hand, from the different approaches used by the EU Commission and the Chinese Supreme People's Court. The Court scores better in terms of ensuring legal certainty; nevertheless, it may face difficulties when it has to apply economic analysis. The Commission seemingly uses more economics, but the application is not full-fledged, as it disregards important case facts when assessing competition foreclosure, and employs asymmetric legal tests and evidence standards for anti/pro-competitive effects of tying. From a law and economics perspective, we provide suggestions for China and the EU, taking the recent Anti-Monopoly Guidelines on Platforms in China and the forthcoming Digital Markets Act in the EU into account

    The Law and Economics of Tying in Digital Platforms:Comparing Tencent and Android

    Get PDF
    Tying has become a common practice in digital platforms. It may generate both pro-competitive effects and anti-competitive effects, which makes it difficult to distinguish between lawful and unlawful tying practices. The cases of Tencent and Android both involve tying conducts, but interestingly, the cases have different outcomes. This article explores reasons for these different case outcomes from a comparative law and economics perspective. By assessing the facts and legal rulings in Tencent and Android, we find that the different case outcomes result, on the one hand, from the different case facts, and on the other hand, from the different approaches used by the EU Commission and the Chinese Supreme People's Court. The Court scores better in terms of ensuring legal certainty; nevertheless, it may face difficulties when it has to apply economic analysis. The Commission seemingly uses more economics, but the application is not full-fledged, as it disregards important case facts when assessing competition foreclosure, and employs asymmetric legal tests and evidence standards for anti/pro-competitive effects of tying. From a law and economics perspective, we provide suggestions for China and the EU, taking the recent Anti-Monopoly Guidelines on Platforms in China and the forthcoming Digital Markets Act in the EU into account

    Light--like Wilson loops and gauge invariance of Yang--Mills theory in 1+1 dimensions

    Full text link
    A light-like Wilson loop is computed in perturbation theory up to O(g4){\cal O} (g^4) for pure Yang--Mills theory in 1+1 dimensions, using Feynman and light--cone gauges to check its gauge invariance. After dimensional regularization in intermediate steps, a finite gauge invariant result is obtained, which however does not exhibit abelian exponentiation. Our result is at variance with the common belief that pure Yang--Mills theory is free in 1+1 dimensions, apart perhaps from topological effects.Comment: 10 pages, plain TeX, DFPD 94/TH/

    Variational Approach to the Modulational Instability

    Full text link
    We study the modulational stability of the nonlinear Schr\"odinger equation (NLS) using a time-dependent variational approach. Within this framework, we derive ordinary differential equations (ODEs) for the time evolution of the amplitude and phase of modulational perturbations. Analyzing the ensuing ODEs, we re-derive the classical modulational instability criterion. The case (relevant to applications in optics and Bose-Einstein condensation) where the coefficients of the equation are time-dependent, is also examined

    Site investigation for the effects of vegetation on ground stability

    Get PDF
    The procedure for geotechnical site investigation is well established but little attention is currently given to investigating the potential of vegetation to assist with ground stability. This paper describes how routine investigation procedures may be adapted to consider the effects of the vegetation. It is recommended that the major part of the vegetation investigation is carried out, at relatively low cost, during the preliminary (desk) study phase of the investigation when there is maximum flexibility to take account of findings in the proposed design and construction. The techniques available for investigation of the effects of vegetation are reviewed and references provided for further consideration. As for general geotechnical investigation work, it is important that a balance of effort is maintained in the vegetation investigation between (a) site characterisation (defining and identifying the existing and proposed vegetation to suit the site and ground conditions), (b) testing (in-situ and laboratory testing of the vegetation and root systems to provide design parameters) and (c) modelling (to analyse the vegetation effects)

    First-principles study of (BiScO3){1-x}-(PbTiO3){x} piezoelectric alloys

    Full text link
    We report a first-principles study of a class of (BiScO3)_{1-x}-(PbTiO3)_x (BS-PT) alloys recently proposed by Eitel et al. as promising materials for piezoelectric actuator applications. We show that (i) BS-PT displays very large structural distortions and polarizations at the morphotropic phase boundary (MPB) (we obtain a c/a of ~1.05-1.08 and P_tet of ~1.1 C/m^2); (ii) the ferroelectric and piezoelectric properties of BS-PT are dominated by the onset of hybridization between Bi/Pb-6p and O-2p orbitals, a mechanism that is enhanced upon substitution of Pb by Bi; and (iii) the piezoelectric responses of BS-PT and Pb(Zr_{1-x}Ti_x)O3 (PZT) at the MPB are comparable, at least as far as the computed values of the piezoelectric coefficient d_15 are concerned. While our results are generally consistent with experiment, they also suggest that certain intrinsic properties of BS-PT may be even better than has been indicated by experiments to date. We also discuss results for PZT that demonstrate the prominent role played by Pb displacements in its piezoelectric properties.Comment: 6 pages, with 3 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/ji_bi/index.htm

    Quasiparticle excitation in and around the vortex core of underdoped YBa_2Cu_4O_8 studied by site-selective NMR

    Full text link
    We report a site-selective ^{17}O spin-lattice relaxation rate T_1^{-1} in the vortex state of underdoped YBa_2Cu_4O_8. We found that T_1^{-1} at the planar sites exhibits an unusual nonmonotonic NMR frequency dependence. In the region well outside the vortex core, T_1^{-1} cannot be simply explained by the density of states of the Doppler-shifted quasiparticles in the d-wave superconductor. Based on T_1^{-1} in the vortex core region, we establish strong evidence that the local density of states within the vortex core is strongly reduced.Comment: 5 pages, 3 figure

    Sodium atoms and clusters on graphite: a density functional study

    Full text link
    Sodium atoms and clusters (N<5) on graphite (0001) are studied using density functional theory, pseudopotentials and periodic boundary conditions. A single Na atom is observed to bind at a hollow site 2.45 A above the surface with an adsorption energy of 0.51 eV. The small diffusion barrier of 0.06 eV indicates a flat potential energy surface. Increased Na coverage results in a weak adsorbate-substrate interaction, which is evident in the larger separation from the surface in the cases of Na_3, Na_4, Na_5, and the (2x2) Na overlayer. The binding is weak for Na_2, which has a full valence electron shell. The presence of substrate modifies the structures of Na_3, Na_4, and Na_5 significantly, and both Na_4 and Na_5 are distorted from planarity. The calculated formation energies suggest that clustering of atoms is energetically favorable, and that the open shell clusters (e.g. Na_3 and Na_5) can be more abundant on graphite than in the gas phase. Analysis of the lateral charge density distributions of Na and Na_3 shows a charge transfer of about 0.5 electrons in both cases.Comment: 20 pages, 6 figure

    Identifying diachronic topic-based research communities by clustering shared research trajectories

    Get PDF
    Communities of academic authors are usually identified by means of standard community detection algorithms, which exploit ‘static’ relations, such as co-authorship or citation networks. In contrast with these approaches, here we focus on diachronic topic-based communities –i.e., communities of people who appear to work on semantically related topics at the same time. These communities are interesting because their analysis allows us to make sense of the dynamics of the research world –e.g., migration of researchers from one topic to another, new communities being spawn by older ones, communities splitting, merging, ceasing to exist, etc. To this purpose, we are interested in developing clustering methods that are able to handle correctly the dynamic aspects of topic-based community formation, prioritizing the relationship between researchers who appear to follow the same research trajectories. We thus present a novel approach called Temporal Semantic Topic-Based Clustering (TST), which exploits a novel metric for clustering researchers according to their research trajectories, defined as distributions of semantic topics over time. The approach has been evaluated through an empirical study involving 25 experts from the Semantic Web and Human-Computer Interaction areas. The evaluation shows that TST exhibits a performance comparable to the one achieved by human experts

    Chaotic scalar fields as models for dark energy

    Full text link
    We consider stochastically quantized self-interacting scalar fields as suitable models to generate dark energy in the universe. Second quantization effects lead to new and unexpected phenomena is the self interaction strength is strong. The stochastically quantized dynamics can degenerate to a chaotic dynamics conjugated to a Bernoulli shift in fictitious time, and the right amount of vacuum energy density can be generated without fine tuning. It is numerically observed that the scalar field dynamics distinguishes fundamental parameters such as the electroweak and strong coupling constants as corresponding to local minima in the dark energy landscape. Chaotic fields can offer possible solutions to the cosmological coincidence problem, as well as to the problem of uniqueness of vacua.Comment: 30 pages, 3 figures. Replaced by final version accepted by Phys. Rev.
    corecore