594 research outputs found

    Topology and Flux of T-Dual Manifolds with Circle Actions

    Get PDF
    We present an explicit formula for the topology and H-flux of the T-dual of a general type II compactification, significantly generalizing earlier results. Our results apply to T-dualities with respect to any circle action on spacetime. As before, T-duality exchanges type IIA and type IIB string theories. A new consequence is that the T-dual spacetime is a singular space when the fixed point set is non-empty; the singularities correspond to Kaluza-Klein monopoles. We propose that the Ramond-Ramond charges of type II string theories on the singular dual are classified by twisted equivariant cohomology groups. We also include the K-theory approach.Comment: 9 pages, 1 figure, version to appear in CM

    Reduction of the Three Dimensional Schrodinger Equation for Multilayered Films

    Full text link
    In this paper, we present a method for reducing the three dimensional Schrodinger equation to study confined metallic states, such as quantum well states, in a multilayer film geometry. While discussing some approximations that are employed when dealing with the three dimensionality of the problem, we derive a one dimensional equation suitable for studying such states using an envelope function approach. Some applications to the Cu/Co multilayer system with regard to spin tunneling/rotations and angle resolved photoemission are discussed.Comment: 14 pages, 1 figur

    The critical amplitude ratio of the susceptibility in the random-site two-dimensional Ising model

    Full text link
    We present a new way of probing the universality class of the site-diluted two-dimensional Ising model. We analyse Monte Carlo data for the magnetic susceptibility, introducing a new fitting procedure in the critical region applicable even for a single sample with quenched disorder. This gives us the possibility to fit simultaneously the critical exponent, the critical amplitude and the sample dependent pseudo-critical temperature. The critical amplitude ratio of the magnetic susceptibility is seen to be independent of the concentration qq of the empty sites for all investigated values of q≀0.25q\le 0.25. At the same time the average effective exponent Îłeff\gamma_{eff} is found to vary with the concentration qq, which may be argued to be due to logarithmic corrections to the power law of the pure system. This corrections are canceled in the susceptibility amplitude ratio as predicted by theory. The central charge of the corresponding field theory was computed and compared well with the theoretical predictions.Comment: 6 pages, 4 figure

    Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part I : theoretical formulation and model validation

    Get PDF
    This paper is first of the two papers dealingwith analytical investigation of resonant multimodal dynamics due to 2:1 internal resonances in the finite-amplitude free vibrations of horizontal/inclined cables. Part I deals with theoretical formulation and validation of the general cable model. Approximate nonlinear partial differential equations of 3-D coupled motion of small sagged cables - which account for both spatio-temporal variation of nonlinear dynamic tension and system asymmetry due to inclined sagged configurations - are presented. A multidimensional Galerkin expansion of the solution ofnonplanar/planar motion is performed, yielding a complete set of system quadratic/cubic coefficients. With the aim of parametrically studying the behavior of horizontal/inclined cables in Part II [25], a second-order asymptotic analysis under planar 2:1 resonance is accomplished by the method of multiple scales. On accounting for higher-order effectsof quadratic/cubic nonlinearities, approximate closed form solutions of nonlinear amplitudes, frequencies and dynamic configurations of resonant nonlinear normal modes reveal the dependence of cable response on resonant/nonresonant modal contributions. Depending on simplifying kinematic modeling and assigned system parameters, approximate horizontal/inclined cable models are thoroughly validated by numerically evaluating statics and non-planar/planar linear/non-linear dynamics against those of the exact model. Moreover, the modal coupling role and contribution of system longitudinal dynamics are discussed for horizontal cables, showing some meaningful effects due to kinematic condensation

    Kinetic energy driven superconductivity in doped cuprates

    Full text link
    Within the t-J model, the mechanism of superconductivity in doped cuprates is studied based on the partial charge-spin separation fermion-spin theory. It is shown that dressed holons interact occurring directly through the kinetic energy by exchanging dressed spinon excitations, leading to a net attractive force between dressed holons, then the electron Cooper pairs originating from the dressed holon pairing state are due to the charge-spin recombination, and their condensation reveals the superconducting ground-state. The electron superconducting transition temperature is determined by the dressed holon pair transition temperature, and is proportional to the concentration of doped holes in the underdoped regime. With the common form of the electron Cooper pair, we also show that there is a coexistence of the electron Cooper pair and antiferromagnetic short-range correlation, and hence the antiferromagnetic short-range fluctuation can persist into the superconducting state. Our results are qualitatively consistent with experiments.Comment: 6 pages, Revtex, two figures are included, corrected typo

    Neutral weak currents in pion electroproduction on the nucleon

    Get PDF
    Parity violating asymmetry in inclusive scattering of longitudinally polarized electrons by unpolarized protons with π0\pi^0 or π+\pi^+ meson production, is calculated as a function of the momentum transfer squared Q2Q^2 and the total energy WW of the πN\pi N-system. This asymmetry, which is induced by the interference of the one-photon exchange amplitude with the parity-odd part of the Z0Z^0-exchange amplitude, is calculated for the γ∗(Z∗)+p→N+π\gamma^*(Z^*)+p\to N+\pi processes (γ∗\gamma^* is a virtual photon and Z∗Z^* a virtual Z-boson) considering the Δ\Delta-contribution in the s−s-channel, the standard Born contributions and vector meson (ρ\rho and ω\omega) exchanges in the t−t-channel. Taking into account the known isotopic properties of the hadron electromagnetic and neutral currents, we show that the P-odd term is the sum of two contributions. The main term is model independent and it can be calculated exactly in terms of fundamental constants. It is found to be linear in Q2Q^2. The second term is a relatively small correction which is determined by the isoscalar component of the electromagnetic current. Near threshold and in the Δ\Delta-region, this isoscalar part is much smaller (in absolute value) than the isovector one: its contribution to the asymmetry depend on the polarization state (longitudinal or transverse) of the virtual photon.Comment: 30 pages 9 figure

    Regionally aggregated, stitched and de‐drifted CMIP‐climate data, processed with netCDF‐SCM v2.0.0

    Get PDF
    The world's most complex climate models are currently running a range of experiments as part of the Sixth Coupled Model Intercomparison Project (CMIP6). Added to the output from the Fifth Coupled Model Intercomparison Project (CMIP5), the total data volume will be in the order of 20PB. Here, we present a dataset of annual, monthly, global, hemispheric and land/ocean means derived from a selection of experiments of key interest to climate data analysts and reduced complexity climate modellers. The derived dataset is a key part of validating, calibrating and developing reduced complexity climate models against the behaviour of more physically complete models. In addition to its use for reduced complexity climate modellers, we aim to make our data accessible to other research communities. We facilitate this in a number of ways. Firstly, given the focus on annual, monthly, global, hemispheric and land/ocean mean quantities, our dataset is orders of magnitude smaller than the source data and hence does not require specialized ‘big data’ expertise. Secondly, again because of its smaller size, we are able to offer our dataset in a text-based format, greatly reducing the computational expertise required to work with CMIP output. Thirdly, we enable data provenance and integrity control by tracking all source metadata and providing tools which check whether a dataset has been retracted, that is identified as erroneous. The resulting dataset is updated as new CMIP6 results become available and we provide a stable access point to allow automated downloads. Along with our accompanying website (cmip6.science.unimelb.edu.au), we believe this dataset provides a unique community resource, as well as allowing non-specialists to access CMIP data in a new, user-friendly way

    Coordination in multiagent systems and Laplacian spectra of digraphs

    Full text link
    Constructing and studying distributed control systems requires the analysis of the Laplacian spectra and the forest structure of directed graphs. In this paper, we present some basic results of this analysis partially obtained by the present authors. We also discuss the application of these results to decentralized control and touch upon some problems of spectral graph theory.Comment: 15 pages, 2 figures, 40 references. To appear in Automation and Remote Control, Vol.70, No.3, 200
    • 

    corecore