1,275 research outputs found

    The cellular receptors for infectious bursal disease virus

    Get PDF
    Virus receptors are simplistically defined as cell surface molecules that mediate binding (attachment, adsorption) and/or trigger membrane fusion or entry through other processes. Infectious bursal diseasevirus (IBDV) entry into host cells occurs by recognition of specific cellular receptor(s) with viral envelope glycoprotein, which comprises the initial and key step of infection. Infection can be inhibited by blockage of the process. So the interest in receptors has been stimulated in large part by thepotential in the application of developing substances that show directed blocking activity. While for the purpose one should know which host cell and viral molecules are involved in the reciprocal recognition and interaction leading to the virus entry into the cell. Here, the review presents the currently available knowledge regarding the receptors or molecules that interact with IBDV

    Current-induced magnetization dynamics in Co/Cu/Co nanopillars

    Get PDF
    Author name used in this publication: S. Q. Shi2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Micromagnetic simulations of current-induced magnetization switching in Co/Cu/Co nanopillars

    Get PDF
    Author name used in this publication: S. Q. Shi2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    可再生能源分布式发电能量管理的复杂性研究

    Get PDF
    Author name used in this publication: 刘俊峰, LIU Jun-fengAuthor name used in this publication: 吴丽群Author name used in this publication: 颜汉荣Title in Traditional Chinese: 可再生能源分布式發電能量管理的複雜性研究Journal title in Traditional Chinese: 控制理論與應用2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Nanofluids Research: Key Issues

    Get PDF
    Nanofluids are a new class of fluids engineered by dispersing nanometer-size structures (particles, fibers, tubes, droplets) in base fluids. The very essence of nanofluids research and development is to enhance fluid macroscopic and megascale properties such as thermal conductivity through manipulating microscopic physics (structures, properties and activities). Therefore, the success of nanofluid technology depends very much on how well we can address issues like effective means of microscale manipulation, interplays among physics at different scales and optimization of microscale physics for the optimal megascale properties. In this work, we take heat-conduction nanofluids as examples to review methodologies available to effectively tackle these key but difficult problems and identify the future research needs as well. The reviewed techniques include nanofluids synthesis through liquid-phase chemical reactions in continuous-flow microfluidic microreactors, scaling-up by the volume averaging and constructal design with the constructal theory. The identified areas of future research contain microfluidic nanofluids, thermal waves and constructal nanofluids

    Temporal trend and climate factors of hemorrhagic fever with renal syndrome epidemic in Shenyang City, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemorrhagic fever with renal syndrome (HFRS) is an important infectious disease caused by different species of hantaviruses. As a rodent-borne disease with a seasonal distribution, external environmental factors including climate factors may play a significant role in its transmission. The city of Shenyang is one of the most seriously endemic areas for HFRS. Here, we characterized the dynamic temporal trend of HFRS, and identified climate-related risk factors and their roles in HFRS transmission in Shenyang, China.</p> <p>Methods</p> <p>The annual and monthly cumulative numbers of HFRS cases from 2004 to 2009 were calculated and plotted to show the annual and seasonal fluctuation in Shenyang. Cross-correlation and autocorrelation analyses were performed to detect the lagged effect of climate factors on HFRS transmission and the autocorrelation of monthly HFRS cases. Principal component analysis was constructed by using climate data from 2004 to 2009 to extract principal components of climate factors to reduce co-linearity. The extracted principal components and autocorrelation terms of monthly HFRS cases were added into a multiple regression model called principal components regression model (PCR) to quantify the relationship between climate factors, autocorrelation terms and transmission of HFRS. The PCR model was compared to a general multiple regression model conducted only with climate factors as independent variables.</p> <p>Results</p> <p>A distinctly declining temporal trend of annual HFRS incidence was identified. HFRS cases were reported every month, and the two peak periods occurred in spring (March to May) and winter (November to January), during which, nearly 75% of the HFRS cases were reported. Three principal components were extracted with a cumulative contribution rate of 86.06%. Component 1 represented MinRH<sub>0</sub>, MT<sub>1</sub>, RH<sub>1</sub>, and MWV<sub>1</sub>; component 2 represented RH<sub>2</sub>, MaxT<sub>3</sub>, and MAP<sub>3</sub>; and component 3 represented MaxT<sub>2</sub>, MAP<sub>2</sub>, and MWV<sub>2</sub>. The PCR model was composed of three principal components and two autocorrelation terms. The association between HFRS epidemics and climate factors was better explained in the PCR model (<it>F </it>= 446.452, <it>P </it>< 0.001, adjusted <it>R</it><sup>2 </sup>= 0.75) than in the general multiple regression model (<it>F </it>= 223.670, <it>P </it>< 0.000, adjusted <it>R</it><sup>2 </sup>= 0.51).</p> <p>Conclusion</p> <p>The temporal distribution of HFRS in Shenyang varied in different years with a distinctly declining trend. The monthly trends of HFRS were significantly associated with local temperature, relative humidity, precipitation, air pressure, and wind velocity of the different previous months. The model conducted in this study will make HFRS surveillance simpler and the control of HFRS more targeted in Shenyang.</p

    Longitudinal neural connection detection using a ferritin-encoding adeno-associated virus vector and in vivo MRI method

    Get PDF
    The investigation of neural circuits is important for interpreting both healthy brain function and psychiatric disorders. Currently, the architecture of neural circuits is always investigated with fluorescent protein encoding neurotropic virus and ex vivo fluorescent imaging technology. However, it is difficult to obtain a whole-brain neural circuit connection in living animals, due to the limited fluorescent imaging depth. Herein, the non-invasive, whole-brain imaging technique of MRI and the hypotoxicity virus vector AAV (adeno-associated virus) were combined to investigate the whole-brain neural circuits in vivo. AAV2-retro are an artificially-evolved virus vector that permits access to the terminal of neurons and retrograde transport to their cell bodies. By expressing the ferritin protein which could accumulate iron ions and influence the MRI contrast, the neurotropic virus can cause MRI signal changes in the infected regions. For mice injected with the ferritin-encoding virus vector (rAAV2-retro-CAG-Ferritin) in the caudate putamen (CPu), several regions showed significant changes in MRI contrasts, such as PFC (prefrontal cortex), HIP (hippocampus), Ins (insular cortex) and BLA (basolateral amygdala). The expression of ferritin in those regions were also verified with ex vivo fluorescence imaging. In addition, we demonstrated that changes in T2 relaxation time could be used to identify the spread area of the virus in the brain over time. Thus, the neural connections could be longitudinally detected with the in vivo MRI method. This novel technique could be utilized to observe the viral infection long-term and detect the neural circuits in a living animal. Keywords: Neural circuit; Ferritin; In vivo MRI; rAAV2-retro; Immunohistochemistry

    Micelles as Delivery Vehicles for Oligofluorene for Bioimaging

    Get PDF
    With the successful development of organic/polymeric light emitting diodes, many organic and polymeric fluorophores with high quantum efficiencies and optical stability were synthesized. However, most of these materials which have excellent optical properties are insoluble in water, limiting their applications in biological fields. Herein, we used micelles formed from an amino-group-containing poly(ε-caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG-NH2) to incorporate a hydrophobic blue emitter oligofluorene (OF) to enable its application in biological conditions. Although OF is completely insoluble in water, it was successfully transferred into aqueous solutions with a good retention of its photophysical properties. OF exhibited a high quantum efficiency of 0.84 in a typical organic solvent of tetrahydrofuran (THF). In addition, OF also showed a good quantum efficiency of 0.46 after being encapsulated into micelles. Two cells lines, human glioblastoma (U87MG) and esophagus premalignant (CP-A), were used to study the cellular internalization of the OF incorporated micelles. Results showed that the hydrophobic OF was located in the cytoplasm, which was confirmed by co-staining the cells with nucleic acid specific SYTO 9, lysosome specific LysoTracker Red®, and mitochondria specific MitoTracker Red. MTT assay indicated non-toxicity of the OF-incorporated micelles. This study will broaden the application of hydrophobic functional organic compounds, oligomers, and polymers with good optical properties to enable their applications in biological research fields
    corecore