1,147 research outputs found
Second-order corrections to mean field evolution for weakly interacting Bosons. I
Inspired by the works of Rodnianski and Schlein and Wu, we derive a new
nonlinear Schr\"odinger equation that describes a second-order correction to
the usual tensor product (mean-field) approximation for the Hamiltonian
evolution of a many-particle system in Bose-Einstein condensation. We show that
our new equation, if it has solutions with appropriate smoothness and decay
properties, implies a new Fock space estimate. We also show that for an
interaction potential , where is
sufficiently small and , our program can be easily
implemented locally in time. We leave global in time issues, more singular
potentials and sophisticated estimates for a subsequent part (part II) of this
paper
Cumulative Response of Ecosystem Carbon and Nitrogen Stocks to Chronic CO2 Exposure in a Subtropical Oak Woodland
·Rising atmospheric carbon dioxide (CO2) could alter the carbon (C) and nitrogen (N) content of ecosystems, yet the magnitude of these effects are not well known. We examined C and N budgets of a subtropical woodland after 11 yr of exposure to elevated CO2.
·We used open-top chambers to manipulate CO2 during regrowth after fire, and measured C, N and tracer 15N in ecosystem components throughout the experiment.
·Elevated CO2 increased plant C and tended to increase plant N but did not significantly increase whole-system C or N. Elevated CO2 increased soil microbial activity and labile soil C, but more slowly cycling soil C pools tended to decline. Recovery of a long-term 15N tracer indicated that CO2 exposure increased N losses and altered N distribution, with no effect on N inputs.
· Increased plant C accrual was accompanied by higher soil microbial activity and increased C losses from soil, yielding no statistically detectable effect of elevated CO2 on net ecosystem C uptake. These findings challenge the treatment of terrestrial ecosystems responses to elevated CO2 in current biogeochemical models, where the effect of elevated CO2 on ecosystem C balance is described as enhanced photosynthesis and plant growth with decomposition as a first-order response
Constraints on coupling constant between dark energy and dark matter
We have investigated constraints on the coupling between dark matter and the
interacting Chaplygin gas. Our results indicate that the coupling constant
between these two entities can take arbitrary values, which can be either
positive or negative, thus giving arbitrary freedom to the inter-conversion
between Chaplygin gas and dark matter. Thus our results indicate that the
restriction on the coupling constant occurs as a very special case. Our
analysis also supports the existence of phantom energy under certain conditions
on the coupling constant.Comment: 16 Pages, 3 figure
A non trivial extension of the two-dimensional Ising model: the d-dimensional "molecular" model
A recently proposed molecular model is discussed as a non-trivial extension
of the Ising model. For d=2 the two models are shown to be equivalent, while
for d>2 the molecular model describes a peculiar second order transition from
an isotropic high temperature phase to a low-dimensional anisotropic low
temperature state. The general mean field analysis is compared with the results
achieved by a variational Migdal-Kadanoff real space renormalization group
method and by standard Monte Carlo sampling for d=3. By finite size scaling the
critical exponent has been found to be 0.44\pm 0.02 thus establishing that the
molecular model does not belong to the universality class of the Ising model
for d>2.Comment: 25 pages, 5 figure
Size and power properties of some tests in the Birnbaum-Saunders regression model
The Birnbaum-Saunders distribution has been used quite effectively to model
times to failure for materials subject to fatigue and for modeling lifetime
data. In this paper we obtain asymptotic expansions, up to order and
under a sequence of Pitman alternatives, for the nonnull distribution functions
of the likelihood ratio, Wald, score and gradient test statistics in the
Birnbaum-Saunders regression model. The asymptotic distributions of all four
statistics are obtained for testing a subset of regression parameters and for
testing the shape parameter. Monte Carlo simulation is presented in order to
compare the finite-sample performance of these tests. We also present an
empirical application.Comment: Paper submitted for publication, with 13 pages and 1 figur
Vision based referee sign language recognition system for the RoboCup MSL league
In RoboCup Middle Size league (MSL) the main referee uses assisting technology, controlled by a second referee, to support him, in particular for conveying referee decisions for robot players with the help of a wireless communication system.
In this paper a vision-based system is introduced, able to interpret dynamic and static gestures of the referee, thus eliminating the need for a second one. The referee's gestures are interpreted by the system and sent directly to the Referee Box, which sends the proper commands to the robots. The system is divided into four modules: a real time hand tracking and feature extraction, a SVM (Support Vector Machine) for static hand posture identification, an HMM (Hidden Markov Model) for dynamic unistroke hand gesture recognition, and a FSM (Finite State Machine) to control the various system states transitions. The experimental results showed that the system works very reliably, being able to recognize the combination of gestures and hand postures in real-time. For the hand posture recognition, with the SVM model trained with the selected features, an accuracy of 98,2% was achieved. Also, the system has many advantages over the current implemented one, like avoiding the necessity of a second referee, working on noisy environments, working on wireless jammed situations. This system is easy to implement and train and may be an inexpensive solution
Spin-Orbit Coupling and Time-Reversal Symmetry in Quantum Gates
We study the effect of spin-orbit coupling on quantum gates produced by
pulsing the exchange interaction between two single electron quantum dots.
Spin-orbit coupling enters as a small spin precession when electrons tunnel
between dots. For adiabatic pulses the resulting gate is described by a unitary
operator acting on the four-dimensional Hilbert space of two qubits. If the
precession axis is fixed, time-symmetric pulsing constrains the set of possible
gates to those which, when combined with single qubit rotations, can be used in
a simple CNOT construction. Deviations from time-symmetric pulsing spoil this
construction. The effect of time asymmetry is studied by numerically
integrating the Schr\"odinger equation using parameters appropriate for GaAs
quantum dots. Deviations of the implemented gate from the desired form are
shown to be proportional to dimensionless measures of both spin-orbit coupling
and time asymmetry of the pulse.Comment: 10 pages, 3 figure
Pair excitations and the mean field approximation of interacting Bosons, I
In our previous work \cite{GMM1},\cite{GMM2} we introduced a correction to
the mean field approximation of interacting Bosons. This correction describes
the evolution of pairs of particles that leave the condensate and subsequently
evolve on a background formed by the condensate. In \cite{GMM2} we carried out
the analysis assuming that the interactions are independent of the number of
particles . Here we consider the case of stronger interactions. We offer a
new transparent derivation for the evolution of pair excitations. Indeed, we
obtain a pair of linear equations describing their evolution. Furthermore, we
obtain apriory estimates independent of the number of particles and use these
to compare the exact with the approximate dynamics
Nonergodic Behavior of Interacting Bosons in Harmonic Traps
We study the time evolution of a system of interacting bosons in a harmonic
trap. In the low-energy regime, the quantum system is not ergodic and displays
rather large fluctuations of the ground state occupation number. In the high
energy regime of classical physics we find nonergodic behavior for modest
numbers of trapped particles. We give two conditions that assure the ergodic
behavior of the quantum system even below the condensation temperature.Comment: 11 pages, 3 PS-figures, uses psfig.st
- …