171,147 research outputs found

    Phased models for evaluating the performability of computing systems

    Get PDF
    A phase-by-phase modelling technique is introduced to evaluate a fault tolerant system's ability to execute different sets of computational tasks during different phases of the control process. Intraphase processes are allowed to differ from phase to phase. The probabilities of interphase state transitions are specified by interphase transition matrices. Based on constraints imposed on the intraphase and interphase transition probabilities, various iterative solution methods are developed for calculating system performability

    Angular-dependent Magnetoresistance Oscillations in Na0.48_{0.48}CoO2_{2} Single Crystal

    Full text link
    We report measurements of the c-axis angular-dependent magnetoresistance (AMR) for a Na0.48_{0.48}CoO2_{2} single crystal, with a magnetic field of 10 T rotating within Co-O planes. Below the metal-insulator transition temperature induced by the charge ordering, the oscillation of the AMR is dominated by a two-fold rotational symmetry. The amplitudes of the oscillation corresponding to the four- and six-fold rotational symmetries are distinctive in low temperatures, but they merge into the background simultaneously at about 25 K. The six-fold oscillation originates naturally from the lattice symmetry. The observation of the four-fold rotational symmetry is consistent with the picture proposed by Choy, et al., that the Co lattice in the charge ordered state will split into two orthorhombic sublattice with one occupied by Co3+^{3+} ions and the other by Co4+^{4+} ions. We have also measured the c-axis AMR for Na0.35_{0.35}CoO2_{2} and Na0.85_{0.85}CoO2_{2} single crystals, and found no evidence for the existence of two- and four-fold symmetries.Comment: 4 pages, 6 figures. Submitted to PR

    Two Higgs Bi-doublet Left-Right Model With Spontaneous P and CP Violation

    Full text link
    A left-right symmetric model with two Higgs bi-doublet is shown to be a consistent model for both spontaneous P and CP violation. The flavor changing neutral currents can be suppressed by the mechanism of approximate global U(1) family symmetry. We calculate the constraints from neural KK meson mass difference ΔmK\Delta m_K and demonstrate that a right-handed gauge boson W2W_2 contribution in box-diagrams with mass well below 1 TeV is allowed due to a cancellation caused by a light charged Higgs boson with a mass range 150300150 \sim 300 GeV. The W2W_2 contribution to ϵK\epsilon_K can be suppressed from appropriate choice of additional CP phases appearing in the right-handed Cabbibo-Kobayashi-Maskawa matrix. The model is also found to be fully consistent with B0B^0 mass difference ΔmB\Delta m_B, and the mixing-induced CP violation quantity sin2βJ/ψ\sin2\beta_{J/\psi}, which is usually difficult for the model with only one Higgs bi-doublet. The new physics beyond the standard model can be directly searched at the colliders LHC and ILC.Comment: 25 pages, 6 figures, typos corrected, 1 figure added, published versio

    A simple theory of dipole antennas

    Get PDF
    Simple and quantitatively accurate representation of current distribution in dipole antenna

    The Cylindrical Antenna with Tapered Resistive Loading Scientific Report No. 5

    Get PDF
    Current, input impedance, and far field pattern of cylindrical antenna with tapered resistive loadin

    Giant Anisotropy of Magnetoresistance and "Spin Valve" effect in Antiferromagnetic Nd2xCexCuO4Nd_{2-x}Ce_xCuO_{4}

    Full text link
    We have studied anisotropic magnetoresistance (MR) and magnetization with rotating magnetic field (B) within CuO2CuO_2 plane in lightly doped AF Nd2xCexCuO4Nd_{2-x}Ce_xCuO_{4}. \emph{A giant anisotropy} in MR is observed at low temperature below 5 K. The c-axis resistivity can be tuned about one order of magnitude just by changing B direction within CuO2CuO_2 plane and a scaling behavior between out-of-plane and in-plane MR is found. A "Spin valve" effect is proposed to understand the giant anisotropy of out-of-plane MR and the evolution of scaling parameters with the external field. It is found that the field-induced spin-flop transition of Nd3+^{3+} layer under high magnetic field is the key to understand the giant anisotropy. These results suggest that a novel entanglement between charge and spin dominates the underlying physics.Comment: 7 pages, 8 figure

    Visual Dynamics: Stochastic Future Generation via Layered Cross Convolutional Networks

    Full text link
    We study the problem of synthesizing a number of likely future frames from a single input image. In contrast to traditional methods that have tackled this problem in a deterministic or non-parametric way, we propose to model future frames in a probabilistic manner. Our probabilistic model makes it possible for us to sample and synthesize many possible future frames from a single input image. To synthesize realistic movement of objects, we propose a novel network structure, namely a Cross Convolutional Network; this network encodes image and motion information as feature maps and convolutional kernels, respectively. In experiments, our model performs well on synthetic data, such as 2D shapes and animated game sprites, and on real-world video frames. We present analyses of the learned network representations, showing it is implicitly learning a compact encoding of object appearance and motion. We also demonstrate a few of its applications, including visual analogy-making and video extrapolation.Comment: Journal preprint of arXiv:1607.02586 (IEEE TPAMI, 2019). The first two authors contributed equally to this work. Project page: http://visualdynamics.csail.mit.ed

    Lifetime Difference and Endpoint effect in the Inclusive Bottom Hadron Decays

    Full text link
    The lifetime differences of bottom hadrons are known to be properly explained within the framework of heavy quark effective field theory(HQEFT) of QCD via the inverse expansion of the dressed heavy quark mass. In general, the spectrum around the endpoint region is not well behaved due to the invalidity of 1/mQ1/m_Q expansion near the endpoint. The curve fitting method is adopted to treat the endpoint behavior. It turns out that the endpoint effects are truly small and the explanation on the lifetime differences in the HQEFT of QCD is then well justified. The inclusion of the endpoint effects makes the prediction on the lifetime differences and the extraction on the CKM matrix element Vcb|V_{cb}| more reliable.Comment: 11 pages, Revtex, 10 figures, 6 tables, published versio
    corecore