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o 2 b
The current, the input impedance and the far field pattern of a cylindrical
antenna with resistive loading are determined. The distribution of the resistive
loading along the antenna is a particular function multiplied by a constant positive
parameter a. The current on the antenna and the field pattern are evaluated for a
wide range of lengths with several different a's ranging from 0 to 1 and for positive

integers. They arebfound not critically dependent on the parameter a. For a near

or greater than 1, the antenna is non-reflecting.
INTRODUCTION
In a recent paper by Wu and King [1] it is found that if the antenna is made of
resistive material such that the internal impedance is a particular function of the
position along the antenna, a pure outward traveling wave exists on an antenna of
finite length. They found that if
Y 2

2lz) = ﬁ—h—_-m' 1)

then the zero-order current will be

BT,

ikz
I(z) = C(h-1zl)e (2

15
The constant Y in (1) is determined by

h ikJ(z—z')2+ az
Y I(z) = II(Z') =

) -h J(z-z')2+ az

1
In the above equations, z is the axial coordinate, z= is the internal impedance per

dz' 3

unit length, % is the intrinsic impedance of free space, h is the half length of

the antenna, k is the free-space wave number, and a is the radius of the antenna.

The time dependence is assumed to be e-iut.




It is interesting to see how the traveling wave solution is affected when the
distribution of the resistive loading is changed from the value prescribed by (1).
A change in the“internal“1mpedance'invoIVesjtVO“problems.‘ First, is the task of
finding the new current distribution, i.e., solving the changed differential equation.
Secondly, and more importantly, is the requirement-that the solution obtained be
1ntegrab1é inthe gense'that the field pattern can be obtained numerically without too
much complicationm:

It turns dut that 1if the internal impedance is changed to

' . [ 4
zi(z) - 0 2a
© 4% h - |z]

(4)

where a is a positive constant, the current distribution is the product of the linear
decaying traveling wave function (2) and a confluent hypergeometric function. Moreover,
and by a new method; the field pattern can be cast into a form which is readily
evaluated numerically.

It is-clear that when a = 0 the current distribution is expected to be identical
with the zero-order current of an ordinary dipole antenna. When a = 1, the current

should yield King-and Wu's result. Thus, two references are on hand.

-~ THE DIFFERENTIAL® EQUATION AND' ITS SOLUTION

The differential equation to be solved is the following:

d 2, 2iak i4vk e
(— + K+ YI(z) = =——=V_ &(z) (5)
dz? h - |z| LY °
For z > 0, let .
ikz '
I(z) = Ae (h-2) ¢[2ik(h - 2)] (6)

then, from (5)




2
y S50 + @) S em) + (D) 4() = 0 M
dy ‘ y

where y = 2ik(h - z). A comparison of (7) with equation (6.1.2) of Reference 2 shows
that ¢(y) = B ¢(1-a,2;y). Since a is to vary from O to any positive number, it is

convenient to define ¢(y) by a contour integral as follows:
oY - - yu l-u,°
¢(y) = e (5D du (3)
c

Substitute (8) into- (7), and the reédlt is

2 q - -y * -
[y <55 +@2-n) -(1-0)] [ d e s - [ &1 ol 0w *oa (9
dy c ' C

One of the possible choices of C to make the right hand side of (9) vanish is shown in

Fig. 1. Such-a choice also makes ¢(y) finite when'y <+ 0 so that it satisfies the
boundary condition that I(h) = O.
Thus, the current distribution is formally expressed as
- 1ik|z]
I(z) = Ae (h-|z]) ¢[2ik(h -|z|)) (10)

The constant A can be found from the equation

brik V©
— o
COY

di(z)

1
dz 2

|z*O
It is8 found to be
1 4nik v: ' 1
A =3 T ¥ (kh-1) 9(21kh) - Zikh ¢ (21km)

(11
Note that the confluent hypergeometric function is defined as

and has the integral representation

¢(a,c;x) = ;7351%%;:;3 J e 11w 21 gy (13)
0



Evidently (13) cannot hold for a < 0. But if ¢(a,c;x) is defined in terms of a
different contour, say along C in Fig. 1 rather than from O to 1, as follows:

2(a,c3x) = ﬁa)_r-l(‘%);a_) Iexu w1 (1_“)c-a-1 du (14)
C

then ¢ reduces to ¢ (except for a complex constant) for a > 0 and c-a-1 > 0. It can
‘be shown that (14) is equivalent to the series representation (12) even for a < 0 and
c-a~1l > 0. This is accomplished by means of the following relation
-g;- 3(&-;:;:) = %5(&1,&1;::) ‘ (15)

Repeated use of (15)would finally make the first argument of ; on the right in (15)
positive, and whenever it is positive it is equivalent to the series representation
(12). The series is then integrated as many times as the relation (15) was used.
This completes the proof.

Since in the present case a = i—a, it follows that if o is a positive integer,

¢(a,c3x) is' a polynomial as seen from (12).

EVALUATION OF ¥

vy is determined by the following equation:

ikY(z-z') 2+ az

h
. iklz'| 1y " e '
Sle (h=|z*])e[2ik(h-{z'}|)] dz
¥ = -hj : E_z;!.'_ ar (16)
e-”‘lz| (h-|z|) ¢[2ik(h~|2z])]
when z = 0,
h[ ikz z ]eikv’zz+ a2
2 (1- P ¢[2ik(h- z )])—mp——p—— d
v® ) ° h i Yz + a “ an

$(21kh)

' If the integral representation (8) for ¢ is substituted into (17), and v’z2+ az is

equated approximately to'z, the result is




h 21ikr ' h
o 2ik(h~r )u 21kz 21ikh (h-z)u
2[3 T Ie ° (-]-‘-—"-’—)adudz-%le Ie (%u—)adudz
vy 0 o ¢ Y 0 c
21ikhu l-u.a
Ie (=" du (18)
c u
where r, - /zz+ az. A change in the order of integration of (18) gives
21ikhu . .
2 l (-1—;-“-)" e [sioh’? % c(2a,28) +15(24,28) - £(1-e1?)] au
¥ x - (19)
I (luuau eZikhu du
C

where A = ka(l-u), H = kh(1-u), and C and S are tabulated functions [3, Appendix]

whose definitions are as follows:

. 1l- cos¢u2+ a2 }: sinv‘uz+ az

C(a,x) = ! du S(a,x) =

——— g (20)
0 v‘uz+ az 0 v‘u2+ a2
Thus finally
Yy = 2 sinh-l %-l' Y (21)
where
1-u.® 2ikhu 1 12H
! (-—“—) e [1iS(2A,2H) -C(2A,2H) - 'H-(l-e )] du
C
T= 2 a 2ikhu (22)
J (l-—u-) e d
c’tu u

The integral in (22) can be evaluated numerically.

.o




THE FIELD PATTERN

Let h irz
W) = I I(z) e dz (23)
0

then the field pattern is essentially‘?(;) +-jK-c). When z 2 0, (5) gives

(b-2)1"(2) + k2(h-2)I(z) + 210k I1(z) = V (h-z) 6(2) (24)
where 147k V©
T = —o
T ¥

The following relations are known:

h

izz
jx(z)(h—z) e " dz = h°Kg) + 13'(%) (25a)
0 .
iz . v h 2 izz
0 I"(z)(h-z)e dz = <hI'(0)+I(0)(-1+ihZ) - Il(z)[c (h-z)+2iz]e dz
0
= —122 9 (1) - z(214Th) D) - (1-izh) I(O) (25b)

Clearly I'(0) is zero since I(z) is an even function. The next step is to integrate

both sides of (24) from O to h with respect to z, to get

107t (© +[0E-tHh #21(a-01HD = B+ (-12m) 10) (26)

Note that the §-function has been taken care of properly. The integrating factor of

(26) is 2 2
(k“-z%)h + 2i(ak-7) -ihg l4a 1l-a
O = exp J dg 22 = e (k+z) (k-2)
1(k"-z%)

Thus the solution of (26) is essentially
. - 1- 2
4o P 10T - w0 K

_ '
-1 [15G 4+ et 1] T e )™ a @n
0




ikhy 1-y @
Fly) = e \(1+'y) 1—-.;2— [at+ a,1,(y) + a,1,(y)]

-1 RV

vhere F(Y) - .j(kY)a ao(kh) = '3(0), al(kh) - -'E' ['_2" + I(O)], az(kh) = -h I(0).

y '

-1khy! oy

Lo = e " ey
0
y _ikhy' T a

L) = Iy' e (ﬁ.) dy'
0

It follows with (10) and (11) and the fact that F(*1l) is bounded, that

12khu a
al(kh)~- ~An? I (2u-1) e (122) du

u
C

2 I eZikhu 1-u a

az(kh) = —Ah G:;ﬂ du

C

ao(kh) - -al(kh) Il(l) - az(kh) Iz(l)

Usually the field pattern is obtained from a direct integration of (23).

substituted into (23), this becomes

h ikz icz

°§(c) = A Ie (h-2) ¢{2ik(h-z)] e dz
Q :

i(z#k)h B
= Ae [ dy y e
0 c
, i2khu  1i2khu i(z+k)h
l-u ¢ ih e e - e
= A | du ( ) +

oy
! u t+k -2ku (z+k -2ku)2

-i(z+k)y I 2ikyu

a
e (l§E§ du

(28a)

If (10) is



I1f the second term is integrated by parts the result is

ih(g+k) i2khu

o) = | & —e 4 Ly (29)
¢ T+k-2uk du Cu u
c

It can be shown that (29) satisfies the differential equation (26). The procedure

involves only straight forward substitution although the algebra is tedious. The form
of (29) is inconvenient for numerical evaluation. However, it can be used to calculate

“J(z) when a is a positive integer.

NUMERICAL CALCULATIONS
A. The Field Pattern, 0O< a <1

The electric field pattern is obtained from (28), since the electric field is

-y (5(3) + F(-y)]. Thus,

/-——{ 1~ 2y ikh(l-y)(_i:la

1
5 7 [ o) e no)

ikh(1-y) a . )
+e & -i—f—;g) (e 2309 + 2, B,
where y = cos 6
ikh -ikh
al(kh) - [-PA(O,kh)(l-a) e +e Pz(O,kh)] Fo (30a)
-ikh ikh
az(kh) = [1-e Pl(O,kh) + (1-0) e P3(0,kh)] Fo (30b)
l-y 1-a ikhz

P, (y,kh) = I z e (2ikh - ; = 1khe) 4, (31a)



1-y 1-a ikh

P, (5.kh) = I . e [ikh(Z-z)(l—z) ~a(1-2)-(2-2)] 4. (31b)
0 (2-2)
1-y -ikhz

P3(y.kh) - J 2" EL-—T; dz ‘ (31e)
0 (2-2)
1-y ~ikhz

P, (y,kh) = J L Ele (314)
0 (2-2)°

a2 kb

o T (1w °©
B. The Current, 0 <a <1

From (10) and (28b) the current is expressed in the following form

ik|z|

I(z) = - li'e (h-|z]) a2[kh(1— lﬁ19]
h

Or, as seen from (30b),

ikh(1- I-z-|)

1(z) ’ﬁ-é—)- (h- lz]){1-e h

The numerical integration for the P-functions cannot be done by standard methods

|2l
1kh(1-'Ely

Pllo.kh(l-‘%J)]+(1-a)e P3[0,kh(1-|§')]}

(32)

such as Simpson's rule. This is due to the fact that the integrand has no Taylor's
series expansion at one of the integration limits, hamely, z =0, A formula for numerical
integration near such a point is developed in the Appendix and is tried here for

calculating P-functions.

C. The Current, when a is a positive integer
From Kummer's series (12), it follows that

ikz
I(z) = Ae (h~z) for a =1




- 10 -
ikez
I(z) = Ae (h-2) [1 - ik(h-z)] for a = 2

ikz

Iz) = Ae (h-z)[l - 21k(h-z) - %kz

(h—z)zl fora=3

And so0 on.

D. The Field Pattern, when a is a positive integer

From (29), the electric field pattern is obtained easily.:

v’l—y2 [F(y) + F(-y)]

Fot ™
1(1+y) kh
‘ ikh l-e
| F(y) = + fora=1
| Hy (149
1(1+y)kh 1(14y)kh
Py = -2k2£:h+i)+ —2+41kh+2e2 + 4Q-e 5 ) fora=2
(1+y) (1+y)

| 1(1+y)kh

F(y) = I%; (61kh + 12k%h%- 41k3nd) + —2 5 (6 - e - 241kh -12k%n?)

(1+y)
L 1(1+y)kh L 1(1+y)kh
+ (-24 + 24e + 241kh) + —2—(24 - 24e ) for a = 3.
(1+y) (1+y)
And so on.

PERTURBATION OF o ON THE CURRENT

For a near 1, the P-functions (31) can be expanded into powers of (l-a).

} z l-a iyz
Pl(O,y) = ] (5:;) e {12y - iyz - 1 4+ (1-a)] dz (33)
0

Let
z 1-a (1-a)1n(z/2-2) 2
Qi:; = e =1 4 (l-a)ln(i:EQ

and substitute this into (33). It becomes

P,(0,y) = Po( + (1-a) P




-11 -

where % iyz iy |
PlO(y) - J e [{2y - 1yz - 1] dz = e -2
0
lr 2, 4 (2-2)] d ]md
In o e -z z + e z

OJ ( 2~z dz 0

iyz

Q Plu(y) =

iy
= 2 1n 2 + 2¢(0,y) - 2i5(0,y) +-%; e - 1]

The following relation has been used in the above integrationm:

1 d iyz iyx
J In 2z E;(e )iz = (e -1)ln x + C(0,yx) - 15(0,yx)

0

Similarly, we expand P3(0,y) but only its first term is needed as can be seen from

(32). 1 -iyz 1 ~-iyz
P,(0,y) = J 2* & dz = J 5—5:——— dz
3 o (2—z)“ o 2-2
Thus,

-i2y 1 -1y
P3(0.y) = 2e {c(0,y)-C(0,2y)-15(0,y)+1S(0,2y)+1ln 2] - g[l -~-e ]

Under these approximations, the current becomes
I(2) = oy [3,(2) + (1-)3 (2]
vhere ik|z|
Jo(z) - (h-IzI) e

ik|z| 1kh
J (2) = -e [c(o,zk(h-lzi))-1s(o,2k(h-|z|))J(p-lzl) "EE' sin k(h-|z|)

In order to get first order perturbation terms, we have to expand the coefficient A.

ikh

¢(21kh) = L) - E%Z'{ 1-(1-0) [C(0,2kh) - 15(0,2kh) + &= sin kh]}

21kh
1 l~-e
25w LY ong )

¢'(2ikh) = -
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271kVe. 1
A= iyl . »
.Y Q21kh o - 1-e2ikh
(ikh-1) {l_ia_ -[C(0,2kh)-s(0,2kh)+ ——2—1—&—]} +14+ S
Let, A= A + A, then
e
A - Zrikvo (1-0)
° T Y ikh-1
e21kh_,
(1kh-1) [C(0,2kh) - 15(0,2kh)] + —5—=
Au - Ao(l-u) .
Let, I(z) = L (2) + I (z), then
2n Vo 12| 1k |z
L(2) = A3~ g, ¥(1+1/kh) (-5 e . (34a)
2n Vz(l-a)( ik|z|

")e [c(0,2kh) - c(0,2k(h-|z|))

Ia(z) = JoAa+ AoJu. = c°?(1+1/kh) 7;(1- h

21kh 1kh
- 15(0,2kh) + 15(0,2k(h-|z|)) + g(ikh:i)]° ®— sin k(h—IzI)? (34b)

Note that (34a) is exactly what has been obtained by Wu and King [ref. 1, eq. 21].

When a = 0, the expansions are as follows

1
2 l-¢ iyz
Pl(o,y) = J (3: | e :(21y - iyz - a) dz
0

P,(0,y) = Pio® +a Pla(y)

where 1
2 iyz iy 1 iy

Plo(y) = JE e (2iy - iyz) dz = e’ - -:G (e’-1)

0

1 1 iyz

- 2-z,d _, iyz _ Z

Pla(y) I z ln(——-z )Iz-(e )dz I 32 © dz

0 0

/
= %y—%eiy-l%(ﬂ,y)—iS(O,y)-l- eiZy[(e-12y_ 1)1n 2 +C(0,2y)+15(0,2y)

- C€(0,y) -iS(O,y)]%
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1l a
z -iyz
P3(0,Y) = I G e dz
0

P3(0.y) = Py(y) +a P3a(y)

where
]f ~iyz 1 - e-:ly
Py = e ax = ISR
0
L z -iyz
P3a(y) - J ln(i:;i e dz
0
-1 J -12y 12y

Ty (C(o.y) + 15(0,y) + e [(e -1)1n 2 + C(0,2y) - 15(0,2y)
- €(0,y) + 1S(O.y)]}

When these approximations are substituted into (32), the current becomes

I(z) = <y [Ky(2) +0 K ()]

where
ikh
’Ko(z) = ek sin k(h-|z|)
ikh
R (2) = ‘ek {sin k(h-|z]) + 5(0,2k(h~]|z|)) sin k(h-|z|)
- 1c(0,2k(h-|z|) ) cos k(h—!zl)}
oy 1 21kh \
#(21kh) = S5o= - g ST }S(O,Zkh)+c(0,2kh)]e +C(0,2kh)-S(0, 2kh) *
2ikh 2ikh
o' (21kh) = stofe - e =Ly _ [ [5(0,2kn)+c(0,2kh) e
2{kh 21ikh 3 2ikh
2ikh
L& sin2kh+1-cos2kh-§(0,2kh)~C(0,2kh) ]+[1-cos2kh-sin2kh-C(0, 2kh)+5 (0, 2kh)]
(21kh)?

|

A = A +alA \
[+] o ) ;

|

|
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zukv:' ikh
Ab = COY (-e cos kh)
1 21kh ‘
Au = Ao —z—ik—h-—{e [s(0,2kh) + C(0,2kh)] + S(0,2kh) - C(0,2kh)
e "4l
21ikh
+ & (sin2kh - cos2kh + 1)+(1 — cos2kh - s;glkh)}
ikh
Let
I(z) = Io(z) +a Ia(z)
then e
-2%V 1
Io(z) - AoKo - _°_.M.h_'l2_|). (35a)

COY cos kh
Ia(z) =AK +AK + ona (35b)

Note that (35a) is exactly what has been obtained by King, [ref. 3, eq. II-18.5].

The first order perturbation terms are in terms of tabulated functiomns; thus.
hand calculation of the current distribution is possible for a either near 1 or near
zero. The following table shows the comparison of the current obtained by numerical
integration (carried out by computer) of the exact formula (32), denoted in the table
as 1 A and OA, with that obtained by perturbation formulas (34) and (35), denoted as
I, and ’B'

B
a=0.75, kh = 2«

ﬁ- 0.00 0.25 0.50 " 0.75
I, 1.000 0.818 0.589 0.371
I 1.000 0.812 0.588 0.343
A 0.000 1.564 3.129 4.658
® 0.000  1.559 3.120 4.651




z

h 0.00
IA 1.000
IB 1.000
’A 0.000
’B 0.090

-~ 15 -

a=0.25, kh = 2r

0.25

1.450
1.230
1.561
1,570

EFFICIENCY

0.50

0.754
0.782
3.132
3.141

0.75

1.260
1.170
4.661
4.710

To calculate the efficiengy, the power lost on the resistive antenna is compared witt

the power radiated. The radiated power is obtained by integrating the Poynting vector

over a large spherical surface in the far field rather than by calculating the inmput

impedance which is only of zero-order accuracy in the present theory.

The dissipated power can be found directly from the differential equation (5) as

will be shown later. However, in general, the radiated power cannot be obtained except

by numerical integrationm.

h

P, = 2 J—;— lI(z)l2 (Re z'(2)] dz

0

and since
2
d
¢ 2
dz

2
C——— + k I -
dz

Zak
R h-z -Z I

2
H%+kn+

dz

Zak
h-z R

2, 2ia
+ k% 85 (4 1)

4k Vv
—_—
T (1%

VhY 6(z)

VLY §(2)

§(z)

The dissipated power Ph on the antenna is

(36)

(37)

(38)

(39)

where subscripts R and I denote respectively the real and imaginary parts of the quantity

subscripted and e
bnk V
V, = —%
h
z, Yl

(40)
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From (38) and (39)

2
_a 2,12
1 ;—3—1 +1 S B1f2 = T (v, I+ I 82 (41)

When (41) is substituted into (36), it becomes

h
. Y 2
J0R _2a1 d - d
Py J 4t h-z .2 [v (Y I+ ¥ I68(2) - Ip —5 Ip- I; =5 I;)dz (42)
0 k dz dz
- ® ek a? a?
Q= J ez [IR;—_Z- IR + II 2 I]dz (43)
0 z dz
Then substitute (38) and (39) #nto (43). The result 48 - "
Q= iis ¥_5(2) _(42_1_I+k21 y1 1 4 (L 1 P T, 6(:)1 1 \»dz
[Ty Yp8(®) o H 2Pl 2 % 7 Itk Iy
0‘ z dz dz
B dZIR _ c121I ) b dzIR : c121I
- (V. ¥ 6(z)—= - V, ¥.6(z) —3ldz + k™ [I—% - I —5]dz (44)
h'R 2" 'h'1 2 W2 R 2
‘ dz dz dz dz
0 0 f
The second integral of (44) vanishes so that (42) becomes
e ¥ ¥ b dzlk 20kI, P 2ukIR
Ph -—4_1-!-.-_3-{ J—?R[——-i- ]6(2) dz + JY [—-z—-l- 16(z) dz 1'
: k dz dz
C ¥
_oR h
Finally, e
Vo ,R
P, = -2———“'2 [?RIR(O) - ‘i’III(O)J

Usually ¥ is taken to be real, so that
e

o
Ph 2 I

<

- 1 2
NOBERESHOY

where Ro is the real part of the input impedance. Thus it is seen that the real part

of the zero-order input impedance takes into account only the ohmic loss on the antenna.




The power radiated Pr is

2w s 3 ¥, T )
1 ; - 2
P - f dv I sin 6 do |E(8,0)|" ry = —5 I LA
Thus,
o
51 _ (Re A®(2ikh)]
T 1 ,
8n I IFtotl dy
0

Using the relations (11) and (28b) the above expression is put into final form as

follows: _
P 2 ¥[a,p(kh)a, (kh) + a,;(kh)a,,(kh)]
2 e o (45)
P 1
2.2 2
k“h Ilrtotl dy
0

where al(kh) and az(kh) are given in €30).

P
r
Ph+ Pt

Efficiency

In the particular case a = 1, it can be shown that (45) reduces to

1
2 J I¥|? ay
Py 0

P Y (46
T

wvhere F is given in (38b) of Reference 1 [See also Ref. 5]. It can also be shown that

the dissipated power approaches zero as a - 0. The results of the numerical calculation

agree with the above statements.
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The efficiency has been calculated for a = 1 with kh ranging from /2 to 40x%
(Fig. 10) and for kh = 27 with a varying from 0 to 1 (Fig. 11). In Fig. 11 the value
of ¥ is chosen to be |¥(a=1)| in one curve and 1 [Ref. 3, Table II-20.1]) in the other.
It is expected that should IY(u)I be used, which could be obtained from (22) by numer-

ical integration, the curve would be between these two curves.

CONCLUSION
The field pattern of the dipole antenna with tapered resistive loading is not

critically dependent on the parameter a as long as a stays between O and 1. This

brightens the aspect of the usefulness of the resistive antenna as a broadband directional

communication device. An experimental study of the resistive antenna is in progress.

Results will be reported in another report.
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APPENDIX I

Modified Simpson's Rule B
In order to calculate numerically the integral of the form [ x” F(x) dx, where
F(x) can be expanded in a Taylor series around x = 0, a method 12 developed which is
very similar to the celebrated Simpson's ruls.
Let £(x) be a polynomial of degree 2 which coincides with F(x) at points

xo < ‘1 < xz. Then

2
£(x) =] 2,(x) F(x) (A-1)
k=0
where
(x-x,) (x~x,)
L (x) - —.L._.L
° (xo-xl)(xo-xz)
(x-x ) (x-x,)
zl(x) - (xl-xo)(xl-xz)
(x-x_) (x~-x,)
lz(x) o 1

(xy=xy) (x,-%,)

See [Ref. 4, p. 71]. Let X=X =X~ Xy ® h, x = 2mh + hS where m is a constant

while S is a new variable. It follows that

1
L (x) = 5 (s-1)(5-2)

L = -5(6-2)
L.(x) = *s(s-1)
2 2
dx = hds
Hence, X 2
I = £(x) dx = J h® (2m+s)® £(2mh+hS) h dS
x 0

(o]
- hl"“[aof(zmh) + a,f(2uhth) + a,f(2mh+2h)]




- 20 -

where
2mt+s)® (5-1) (8-2) dS

(2m+5)® s(S-1) ds

82 " '%

The coefficients a can be calculated easily. Thus, after repeated use of the above

T
2

a, = - ! (2m+S)® s(s-2) ds
T

formula,
1. plte N
Ix E(x)dx= s ey (5ra) [P0 (D £(0)-b (M £(B) + kzl b, (k-1) £((2k~1)h)
0
+ b, (k-1)£(2kh) ] (A-2)
where

b (k) = (2k+2) 21 4kt 1-0) - (2K) PO 18K+ (3+0) (6k+4420) ]
by (k) = 4(2K) 20 (214 34a) -4 (2142) 2 (2k-1-0)
b, (k) = - 210 2 (3ratak) - 12 (a+3) (k1) (2k42) 104 (2K4) 210 (4kt5—-a)

h = B/2N

1f F(x) is approximated by f(x), it follows that the integral that involves F(x)
should be given approximately by (A-2). Note that since when k is large the coefficients
bn(k) involve two or three nearly equal numbers that are subtracted from one another,
the error would be large if they were calculated by a computer. It is safe to use the
modified Simpson's rule only at points near the singularity and to use Simpson's rule

elsewhere.
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APPENDIX II

The figures shown are the result of numerical caluclations. The field pattern

18 normalized to the maximum field and the current is referred to the driving point.
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