1,106 research outputs found

    Gene-flow between populations of cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) is highly variable between years

    Get PDF
    Both large and small scale migrations of Helicoverpa armigera Hübner in Australia were investigated using AMOVA analysis and genetic assignment tests. Five microsatellite loci were screened across 3142 individuals from 16 localities in eight major cotton and grain growing regions within Australia, over a 38-month period (November 1999 to January 2003). From November 1999 to March 2001 relatively low levels of migration were characterized between growing regions. Substantially higher than average gene-flow rates and limited differentiation between cropping regions characterized the period from April 2001 to March 2002. A reduced migration rate in the year from April 2002 to March 2003 resulted in significant genetic structuring between cropping regions. This differentiation was established within two or three generations. Genetic drift alone is unlikely to drive genetic differentiation over such a small number of generations, unless it is accompanied by extreme bottlenecks and/or selection. Helicoverpa armigera in Australia demonstrated isolation by distance, so immigration into cropping regions is more likely to come from nearby regions than from afar. This effect was most pronounced in years with limited migration. However, there is evidence of long distance dispersal events in periods of high migration (April 2001–March 2002). The implications of highly variable migration patterns for resistance management are considered.K.D. Scott, K.S. Wilkinson, N. Lawrence, C.L. Lange, L.J. Scott, M.A. Merritt, A.J. Lowe and G.C Graha

    Are empirical equations an appropriate tool to assess separation distances to avoid odour annoyance?

    Get PDF
    Annoyance due to environmental odour exposure is in many jurisdictions evaluated by a yes/no decision. Such a binary decision has been typically achieved via odour impact criteria (OIC) and, when applicable, the resultant separation distances between emission sources and residential areas. If the receptors lie inside the required separation distance, odour exposure is characterised with the potential of causing excessive annoyance. The state-of-the-art methodology to determine separation distances is based on two general steps: (i) calculation of the odour exposure (time series of ambient odour concentrations) using dispersion models and (ii) determination of separation distances through the evaluation of this odour exposure by OIC. Regarding meteorological input data, dispersion models need standard meteorological observations and/or atmospheric stability typically on an hourly basis, which requires expertise in this field. In the planning phase, and as a screening tool, an educated guess of the necessary separation distances to avoid annoyance is in some cases sufficient. Therefore, empirical equations (EQs) are in use to substitute the more time-consuming and costly application of dispersion models. Because the separation distance shape often resembles the wind distribution of a site, wind data should be included in such approaches. Otherwise, the resultant separation distance shape is simply given by a circle around the emission source. Here, an outline of selected empirical equations is given, and it is shown that only a few of them properly reflect the meteorological situation of a site. Furthermore, for three case studies, separation distances as calculated from empirical equations were compared against those from Gaussian plume and Lagrangian particle dispersion models. Overall, our results suggest that some empirical equations reach their limitation in the sense that they are not successful in capturing the inherent complexity of dispersion models. However, empirical equations, developed for Germany and Austria, have the potential to deliver reasonable results, especially if used within the conditions for which they were designed. The main advantage of empirical equations lies in the simplification of the meteorological input data and their use in a fast and straightforward approach

    Surface Normal Deconvolution: Photometric Stereo for Optically Thick Translucent Objects

    Get PDF
    Computer Vision – ECCV 2014 13th European Conference, Zurich, Switzerland, September 6-12, 2014,This paper presents a photometric stereo method that works for optically thick translucent objects exhibiting subsurface scattering. Our method is built upon the previous studies showing that subsurface scattering is approximated as convolution with a blurring kernel. We extend this observation and show that the original surface normal convolved with the scattering kernel corresponds to the blurred surface normal that can be obtained by a conventional photometric stereo technique. Based on this observation, we cast the photometric stereo problem for optically thick translucent objects as a deconvolution problem, and develop a method to recover accurate surface normals. Experimental results of both synthetic and real-world scenes show the effectiveness of the proposed method

    The vanishing of L2 harmonic one-forms on based path spaces

    Full text link
    We prove the triviality of the first L2 cohomology class of based path spaces of Riemannian manifolds furnished with Brownian motion measure, and the consequent vanishing of L2 harmonic one-forms. We give explicit formulae for closed and co-closed one-forms expressed as differentials of functions and co-differentials of L2 two-forms, respectively; these are considered as extended Clark-Ocone formulae. A feature of the proof is the use of the temporal structure of path spaces to relate a rough exterior derivative operator on one-forms to the exterior differentiation operator used to construct the de Rham complex and the self-adjoint Laplacian on L2 one-forms. This Laplacian is shown to have a spectral gap

    Resolving the Azimuthal Ambiguity in Vector Magnetogram Data with the Divergence-Free Condition: Application to Discrete Data

    Full text link
    We investigate how the divergence-free property of magnetic fields can be exploited to resolve the azimuthal ambiguity present in solar vector magnetogram data, by using line-of-sight and horizontal heliographic derivative information as approximated from discrete measurements. Using synthetic data we test several methods that each make different assumptions about how the divergence-free property can be used to resolve the ambiguity. We find that the most robust algorithm involves the minimisation of the absolute value of the divergence summed over the entire field of view. Away from disk centre this method requires the sign and magnitude of the line-of-sight derivatives of all three components of the magnetic field vector.Comment: Solar Physics, in press, 20 pages, 11 figure

    A comprehensive TALEN-based knockout library for generating human induced pluripotent stem cell-based models for cardiovascular diseases

    Get PDF
    Rationale: Targeted genetic engineering using programmable nucleases such as transcription activator-like effector nucleases (TALENs) is a valuable tool for precise, site-specific genetic modification in the human genome. Objective: The emergence of novel technologies such as human induced pluripotent stem cells (iPSCs) and nuclease-mediated genome editing represent a unique opportunity for studying cardiovascular diseases in vitro. Methods and Results: By incorporating extensive literature and database searches, we designed a collection of TALEN constructs to knockout (KO) eighty-eight human genes that are associated with cardiomyopathies and congenital heart diseases. The TALEN pairs were designed to induce double-strand DNA break near the starting codon of each gene that either disrupted the start codon or introduced a frameshift mutation in the early coding region, ensuring faithful gene KO. We observed that all the constructs were active and disrupted the target locus at high frequencies. To illustrate the general utility of the TALEN-mediated KO technique, six individual genes (TNNT2, LMNA/C, TBX5, MYH7, ANKRD1, and NKX2.5) were knocked out with high efficiency and specificity in human iPSCs. By selectively targeting a dilated cardiomyopathy (DCM)-causing mutation (TNNT2 p.R173W) in patient-specific iPSC-derived cardiac myocytes (iPSC-CMs), we demonstrated that the KO strategy ameliorates the DCM phenotype in vitro. In addition, we modeled the Holt-Oram syndrome (HOS) in iPSC-CMs in vitro and uncovered novel pathways regulated by TBX5 in human cardiac myocyte development. Conclusions: Collectively, our study illustrates the powerful combination of iPSCs and genome editing technology for understanding the biological function of genes and the pathological significance of genetic variants in human cardiovascular diseases. The methods, strategies, constructs and iPSC lines developed in this study provide a validated, readily available resource for cardiovascular research

    Striped antiferromagnetic order and electronic properties of stoichiometric LiFeAs from first-principles calculations

    Full text link
    We investigate the structural, electronic, and magnetic properties of stoichiometric LiFeAs by using state-of-the-arts first-principles method. We find the magnetic ground-state by comparing the total energies among all the possible magnetic orders. Our calculated internal positions of Li and As are in good agreement with experiment. Our results show that stoichiometric LiFeAs has almost the same striped antiferromagnetic spin order as other FeAs-based parent compounds and tetragonal FeSe do, and the experimental fact that no magnetic phase transition has been observed at finite temperature is attributed to the tiny inter-layer spin coupling

    New Upper Limit of Terrestrial Equivalence Principle Test for Rotating Extended Bodies

    Full text link
    Improved terrestrial experiment to test the equivalence principle for rotating extended bodies is presented, and a new upper limit for the violation of the equivalence principle is obtained at the level of 1.610-7% \times 10^{\text{-7}}, which is limited by the friction of the rotating gyroscope. It means the spin-gravity interaction between the extended bodies has not been observed at this level.Comment: 4 page

    Quantum Computing and Quantum Simulation with Group-II Atoms

    Full text link
    Recent experimental progress in controlling neutral group-II atoms for optical clocks, and in the production of degenerate gases with group-II atoms has given rise to novel opportunities to address challenges in quantum computing and quantum simulation. In these systems, it is possible to encode qubits in nuclear spin states, which are decoupled from the electronic state in the 1^1S0_0 ground state and the long-lived 3^3P0_0 metastable state on the clock transition. This leads to quantum computing scenarios where qubits are stored in long lived nuclear spin states, while electronic states can be accessed independently, for cooling of the atoms, as well as manipulation and readout of the qubits. The high nuclear spin in some fermionic isotopes also offers opportunities for the encoding of multiple qubits on a single atom, as well as providing an opportunity for studying many-body physics in systems with a high spin symmetry. Here we review recent experimental and theoretical progress in these areas, and summarise the advantages and challenges for quantum computing and quantum simulation with group-II atoms.Comment: 11 pages, 7 figures, review for special issue of "Quantum Information Processing" on "Quantum Information with Neutral Particles

    Magnetic phases and reorientation transitions in antiferromagnetically coupled multilayers

    Full text link
    In antiferromagnetically coupled superlattices grown on (001) faces of cubic substrates, e.g. based on materials combinations as Co/Cu, Fe/Si, Co/Cr, or Fe/Cr, the magnetic states evolve under competing influence of bilinear and biquadratic exchange interactions, surface-enhanced four-fold in-plane anisotropy, and specific finite-size effects. Using phenomenological (micromagnetic) theory, a comprehensive survey of the magnetic states and reorientation transitions has been carried out for multilayer systems with even number of ferromagnetic sub-layers and magnetizations in the plane. In two-layer systems (N=2) the phase diagrams in dependence on components of the applied field in the plane include ``swallow-tail'' type regions of (metastable) multistate co-existence and a number of continuous and discontinuous reorientation transitions induced by radial and transversal components of the applied field. In multilayers (N \ge 4) noncollinear states are spatially inhomogeneous with magnetization varying across the multilayer stack. For weak four-fold anisotropy the magnetic states under influence of an applied field evolve by a complex continuous reorientation into the saturated state. At higher anisotropy they transform into various inhomogeneous and asymmetric structures. The discontinuous transitions between the magnetic states in these two-layers and multilayers are characterized by broad ranges of multi-phase coexistence of the (metastable) states and give rise to specific transitional domain structures.Comment: Manuscript 34 pages, 14 figures; submitted for publicatio
    corecore