Repository of the Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association

http://edoc.mdc-berlin.de/16360

A comprehensive TALEN-based knockout library for generating human induced pluripotent stem cell-based models for cardiovascular diseases

Karakikes, I. and Termglinchan, V. and Cepeda, D.A. and Lee, J. and Diecke, S. and Hendel, A. and Itzhaki, I. and Ameen, M. and Shrestha, R. and Wu, H. and Ma, N. and Shao, N.Y. and Seeger, T. and Woo, N.A. and Wilson, K.D. and Matsa, E. and Porteus, M.H. and Sebastiano, V. and Wu, J.C.

This is the final version of the accepted manuscript. The original article has been published in final edited form in:

Circulation Research
2017 MAY 12 ; 120(10): 1561-1571
2017 FEB 28 (originally published online)
doi: 10.1161/CIRCRESAHA.116.309948
Publisher: American Heart Association
© 2017 American Heart Association, Inc.

NEW METHODS

A Comprehensive TALEN-Based Knockout Library for Generating Human Induced Pluripotent Stem Cell-Based Models for Cardiovascular Diseases

Ioannis Karakikes ${ }^{1,2}$,Vittavat Termglinchan ${ }^{1,3}$, Diana A. Cepeda ${ }^{4}$, Jaecheol Lee ${ }^{1}$, Sebastian Diecke ${ }^{1,8,9}$, Ayal Hendel ${ }^{5}$,Ilanit Itzhaki ${ }^{1}$, Mohamed Ameen ${ }^{1}$, Rajani Shrestha ${ }^{1}$, Haodi Wu ${ }^{1}$, Ning Ma ${ }^{1}$,Ning-Yi Shao ${ }^{1}$,Timon Seeger ${ }^{1}$, Nicole Woo ${ }^{1}$, Kitchener D. Wilson ${ }^{1,6}$, Elena Matsa ${ }^{1}$, Matthew H. Porteus ${ }^{5}$, Vittorio Sebastiano ${ }^{4,7}$, Joseph C. Wu ${ }^{1,3,4}$

${ }^{1}$ Stanford Cardiovascular Institute; ${ }^{2}$ Department of Cardiothoracic Surgery; ${ }^{3}$ Department of Medicine, Division of Cardiovascular Medicine; ${ }^{4}$ Institute of Stem Cell Biology and Regenerative Medicine; ${ }^{5}$ Department of Pediatrics; ${ }^{6}$ Department of Pathology; ${ }^{7}$ Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA; ${ }^{8}$ Berlin Institute of Health, Germany; ${ }^{9}$ Max Delbrueck Center, Berlin, Germany
I.K., V.T., and D.C. contributed equally to this study.

Running title: Cardiomyopathy TALEN Knockout Library

Subject Terms:

Basic Science Research
Cardiomyopathy
Congenital Heart Disease
Genetically Altered and Transgenic Models

Address correspondence to:

Dr. Joseph C. Wu
265 Campus Drive G1120B
Stanford, CA 94305-5454
joewu@stanford.edu

Dr. Vittorio Sebastiano
265 Campus Drive G1167
Stanford, CA 94305-5454
vsebast@stanford.edu

This manuscript was sent to Roger J. Hajjar, Consulting Editor, for review by expert referees, editorial decision, and final disposition.

In January 2016, the average time from submission to first decision for all original research papers submitted to Circulation Research was 13.77 days.

Abstract

Rationale: Targeted genetic engineering using programmable nucleases such as transcription activator-like effector nucleases (TALENs) is a valuable tool for precise, site-specific genetic modification in the human genome.

Objective: The emergence of novel technologies such as human induced pluripotent stem cells (iPSCs) and nuclease-mediated genome editing represent a unique opportunity for studying cardiovascular diseases in vitro.

Methods and Results: By incorporating extensive literature and database searches, we designed a collection of TALEN constructs to knockout (KO) eighty-eight human genes that are associated with cardiomyopathies and congenital heart diseases. The TALEN pairs were designed to induce double-strand DNA break near the starting codon of each gene that either disrupted the start codon or introduced a frameshift mutation in the early coding region, ensuring faithful gene KO. We observed that all the constructs were active and disrupted the target locus at high frequencies. To illustrate the general utility of the TALEN-mediated KO technique, six individual genes (TNNT2, LMNA/C, TBX5, MYH7, ANKRD1, and NKX2.5) were knocked out with high efficiency and specificity in human iPSCs. By selectively targeting a dilated cardiomyopathy (DCM)-causing mutation (TNNT2 p.R173W) in patient-specific iPSC-derived cardiac myocytes (iPSC-CMs), we demonstrated that the KO strategy ameliorates the DCM phenotype in vitro. In addition, we modeled the Holt-Oram syndrome (HOS) in iPSC-CMs in vitro and uncovered novel pathways regulated by TBX5 in human cardiac myocyte development.

Conclusion: Collectively, our study illustrates the powerful combination of iPSCs and genome editing technology for understanding the biological function of genes and the pathological significance of genetic variants in human cardiovascular diseases. The methods, strategies, constructs and iPSC lines developed in this study provide a validated, readily available resource for cardiovascular research.

Keywords:

Genome editing, iPSCs, gene knockout, dilated cardiomyopathy, Holt-Oram syndrome, stem cell, cardiac, gene targeting, disease modeling.

Nonstandard Abbreviations and Acronyms:

cTAL	cardiomyopathy TALEN-based
DSB	Double-strand break
ECM	Extracellular matrix
HOS	Holt-Oram syndrome
iPSCs	induced pluripotent stem cells
iPSC-CMs	iPSC-derived cardiac myocytes
NHEJ	non-homologous end joining
SMRT	single-molecule real-time
TALENs	transcription activator-like effector nucleases
TSS	transcription starting sites
EADs	Early after depolarizations
SCVI	Stanford Cardiovascular Institute

INTRODUCTION

Cardiovascular disease is a major cause of morbidity and mortality around the world. In recent years, exciting progress has been made in defining the etiology of congenital heart disease (CHD) ${ }^{1}$ and inherited cardiomyopathies, ${ }^{2}$ including hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), left ventricular non-compaction (LVNC), and arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D). Recent advances in genomics and molecular medicine have identified genetic mutations in plethora of genes that are implicated in the pathogenesis of inherited cardiomyopathies. Although the molecular analysis efforts have revealed important insights regarding the role of genetics in cardiomyopathies, the underlying molecular mechanisms remain poorly understood and the genotype-phenotype relationship from the ever-growing number of disease-associated gene mutations remains to be established.

Recent advances in technologies for genome editing using site-specific nucleases, ${ }^{3}$ such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9 (CRISPR/Cas9) system, offer a powerful tool for reverse genetics, genome engineering, and targeted transgene integration experiments to be performed in a precise and predictable manner. The use of engineered nucleases to make targeted, permanent changes to genes have revolutionized molecular genetics and present an alternative to the more established method of RNA interference (RNAi)-mediated knockdown using short hairpin RNA (shRNA) or short interfering RNA (siRNA). However, the RNAi-mediated post-transcriptional down-regulation of gene expression without changing the genetic code does not completely shut off the gene of interest. ${ }^{4}$ In most cases, functional RNA or protein remains and is translated albeit at lower levels. Thus, the gene function is reduced, but not eliminated. By contrast, genome editing changes the genetic code and typically causes a functional "knockout" (KO), or complete elimination of the gene function. The nucleases cut both DNA strands of the targeted locus generating a double-strand break (DSB) in the chromosome, which is then repaired by the non-homologous end joining (NHEJ) mechanism that re-ligates the two free chromosome ends. However, NHEJ is error-prone, often resulting in small insertions or deletions that can disrupt, or knockout, the gene of interest.

Over the past decade, the advent of the human induced pluripotent stem cell (iPSC) technology, and the improvements in the differentiation method of iPSCs into specific cell types, such as cardiac myocytes (iPSC-CMs) ${ }^{5}$, endothelial cells (iPSC-ECs), ${ }^{6}$ and smooth muscle cells (iPSC-SMCs), ${ }^{7}$ provide an unprecedented opportunity for the generation of patient-specific in vitro models for disease modeling. Combining genome editing and iPSC technologies can successfully create human-based cell knockout models in vitro. Such models could improve our understanding of the underlying pathological mechanisms, and potentially lead to novel therapies. ${ }^{8}$

In this study, we describe the design, construction, and validation of a cardiomyopathy TALENbased (cTAL) panel to knock out a comprehensive set of genes associated with cardiovascular diseases. We demonstrated the utility of this panel, and presented two case studies that provided novel insights into the pathogenesis of genetic cardiovascular disease. The readily available cTAL panel will allow researchers to fast-track projects by providing a validated panel of TALEN constructs for gene KO genome editing. This approach could provide novel insights into gene function, disease mechanisms, and ultimately disease pathogenesis.

METHODS

TALEN construction.

TALEN genomic binding sites were designed using the TAL Effector Nucleotide Targeter $2.0,{ }^{9}$ with the following constraints: (i) having a repeat array length of 15 repeat variable di-residue domains, and (ii) having a spacer length of $14-18$ nucleotides. A preceding T base in position " 0 " anchored each binding site as has been shown to be optimal for naturally occurring TAL proteins. ${ }^{10,11}$ Each custom TALEN was generated from a library of 832 plasmids through a five-piece subcloning ligation: three sequence-specific tetramer-recognition pieces, one trimer-recognition piece, and an expression vector backbone (pTAL) as previously described. ${ }^{12}$ Briefly, the tetramer or trimer TAL repeats were digested out of library plasmids with the restriction enzyme BsmBI (NEB), gel purified, and subcloned into the pTAL vectors. The forward and reverse TALENs were subcloned into the pTAL_GFP and pTAL_RFP backbones, respectively. The sequences of all constructs used in this study are provided in the Supplemental Information. The TALEN plasmids will be available from Addgene. The cell lines are available upon request from the Stanford CVI iPSC Biobank (http://med.stanford.edu/scvibiobank.html).

Culture and cardiac differentiation of iPSCs.

The human iPSC lines (SCVI-15, SCVI-114, and SCVI-19) were obtained from the Stanford CVI iPSC Biobank. The iPSCs were maintained under feeder-free conditions in defined E8 media (Life Technologies) on tissue culture plates coated with hESC-qualified Matrigel (BD Biosciences) in 5\% $\mathrm{CO}_{2} / 5 \% \mathrm{O}_{2} / 90 \% \mathrm{~N}_{2}$ environment at $37^{\circ} \mathrm{C}$. Human iPSCs were differentiated toward cardiac myocytes using a small molecule mediated directed differentiation protocol. ${ }^{13}$ Briefly, cardiac differentiation was initiated by treatment with recombinant BMP4 and Activin A (Day 0-3), followed by treatment with $5 \mu \mathrm{M}$ IWR-1 for 72 hr (day 4 to day 6).

TALEN transfection.

Human iPSCs were enzymatically dissociated with Accutase (Sigma) and plated on Matrigel coated dishes at 1:3 ratio in E8 supplemented with 10 um Y-27632 (Selleck Chemicals). $24-48 \mathrm{hr}$ later, human iPSCs were dissociated with Accutase into single cells. $\sim 2 \times 10^{6}$ cells were transfected with a pair of TALENs ($1.0 \mu \mathrm{~g}$ of each TALEN) by nucleofection using the Amaxa 4D Nucleofector system (Lonza) with the P3 Primary Cell Nucleofector Kit and program CM-150 per manufacturer's instructions (Lonza). Following nucleofection, iPSCs were re-suspended in 1 ml pre-warmed E8 supplemented with $5 \mu \mathrm{M}$ Thiazovivin and then plated in 6-well plates pre-coated with Matrigel and allowed to recover for 48 hr .

SMRT sequencing.

Genome-editing outcomes at the endogenous loci were quantified using single-molecule real-time (SMRT) DNA sequencing as previously described. ${ }^{14}$ Genomic DNA was extracted from TALEN-transfected iPSCs at 72 hr post-nucleofection without enrichment for transfected cells, and used as a template for PCR amplification using primer pairs designed to amplify a $\sim 500 \mathrm{bp}$ fragment surrounding the TALEN targeted loci. The PCR amplicons were purified using the nucleotide removal kit (Qiagen) and the sequencing libraries were constructed using the DNA Template Prep Kit 1.0 (Pacific Biosciences). SMRTbell libraries contained amplicons that were pooled together with different barcodes appended to allow multiplex analysis. Purified, closed circular SMRTbell libraries were annealed with a sequencing primer complementary to a portion of the single-stranded region of the hairpin. For all SMRTbell libraries, annealing was performed at a final template concentration between 30 and 60 nM , with a 20 -fold molar excess of sequencing primer. All annealing reactions were carried out at $80^{\circ} \mathrm{C}$ for 2 min , with a slow cool to $25^{\circ} \mathrm{C}$ at a rate of $0.1^{\circ} \mathrm{C} / \mathrm{s}$. Annealed templates were stored at $-20^{\circ} \mathrm{C}$ until polymerase binding. DNA polymerase enzymes were stably bound to the primed sites of the annealed SMRTbell templates using the DNA Polymerase Binding Kit 2.0 (Pacific Biosciences). SMRTbell templates (3 nM) were incubated with 6 nM of polymerase in the presence of phospholinked nucleotides at $30^{\circ} \mathrm{C}$ for 2 hr . Following incubation, samples were stored at $4^{\circ} \mathrm{C}$. Sequencing was performed within 72 hr of binding using a final concentration
of 0.3 nM . Each sample was sequenced using the DNA Sequencing Kit 2.0 (Pacific Biosciences). Sequencing data collection was performed on the PacBio RS (Pacific Biosciences) using C2/C2 chemistry and movies of 55 min in each case. The SMRT Sequencing Analysis pipeline was implemented in Strawberry Perl and utilizes the NCBI BLAST software as well as the mEmboss Needleman-Wunsch pairwise alignment algorithm.

Isolation of targeted clonal cell populations.

TALEN-transfected iPSCs were washed once with PBS and enzymatically dissociated with Accutase for $3-5 \mathrm{~min}$ at $37^{\circ} \mathrm{C}$ followed by gently pipetting to ensure single cell suspension. The cells were washed once in PBS and re-suspended in E8 supplemented with Y-27632 (10 um). Double $\mathrm{GFP}^{+} / \mathrm{RFP}^{+}$cells were then sorted by fluorescence activated cell sorter (FACSAria II; BD Biosciences), plated on 6-well plates at a clonal density of 1,000 cells/well and allowed to recover. After 7-10 days, putative single cell- derived clones were manually picked, expanded, and maintained in standard conditions.

RNA-sequencing.

Total RNA was isolated with the RNeasy Isolation kit with on-column DNase I treatment (Qiagen), and the quality of the RNA samples was assessed using the Agilent Bioanalyzer 2100 (Agilent). ERCC spike-in synthetic transcripts were added at manufacturer's recommended amounts (Life Technologies) and $1 \mu \mathrm{~g}$ of each RNA was enriched for poly-A RNA using the Dynabeads® mRNA Direct Kit (Life Technologies) per manufacturer's protocol. Whole transcriptome library preparation was performed using 5-10 ng of fragmented enriched poly-A RNA according to the manufacturer's protocol (Ion Total RNA-Seq Kit V2 protocol; Life Technologies), followed by purification with AMPure beads (Beckman-Coulter Genomics). The quality and quantity of the libraries was assessed using the Agilent Bioanalyzer High Sensitivity Chip (Agilent). Each library concentration was adjusted to 100 pM and 70 ul were used for Ion Template preparation in the automated Ion Chef system and loaded on the Ion PI Chip Kit v2 (Life Technologies). Sequencing was performed in the Ion Proton sequencing platform using the Ion PI ${ }^{\mathrm{TM}}$ Sequencing 200 Kit v3 per manufacturer's protocol (Life Technologies). Base calls were collected with Ion Torrent Suite software (Life Technologies).

Allelic discrimination by digital PCR.

Total RNA was extracted from iPSC-CMs at day 30 post-differentiation using RNeasy Mini Kit (Qiagen), and complementary DNA (cDNA) preparation was carried out using the iScript cDNA Synthesis Kit (BioRad Laboratories). The concentration of cDNA was reduced to about $0.2 \mathrm{ng} / \mu 1$ RNA equivalent and 1 ng ($5 \mu \mathrm{l}$ of $0.2 \mathrm{ng} / \mu \mathrm{l}$) of RNA-equivalent cDNA was mixed with primers, probes and ddPCR Supermix reaction (total volume $20 \mu \mathrm{l}$). The final concentrations of the primers and the probe were 900 nM and 500 nM , respectively. The following primers and probes were used for discriminating the expression of the R173W and the WT TNNT2 alleles; Fw: GAGGAGGAGAACAGGAG and Rv: GCATCATGTTGGACAAAGCC. wt-probe: [FAM]AGGATGAGGCCCGGAAGAAGA[BHQ] and mt-probe [HEX]AGGATGAGGCCTGGAAGAAGA[BHQ]. Droplet formation was carried out using a QX100 droplet generator. A rubber gasket is placed over the cartridge and loaded into the droplet generator. The emulsion ($35 \mu \mathrm{~L}$ in volume) was then slowly transferred using a multichannel pipette to a $96-\mathrm{Well}$ twintec ${ }^{\mathrm{TM}}$ PCR Plates (Eppendorf). The plate was heat-sealed with foil and the emulsion was cycled to end point per the manufacturer's protocol with an annealing temperature at $61^{\circ} \mathrm{C}$. Finally, the samples were analyzed using a BioRad QX100 reader. The expression of TNNT2 was quantified by Real-Time qPCR (Applied Biosystems) using a custom TaqMan probe designed to detect the wild type transcript after TALENmediated KO (Fw: AGACGCCTCCAGGATCTGT, Rv: GCTTCTTCCTGCTCCTCCTC, Probe: [FAM]CAGACATGGTCTCTGCTCTCCCTC[BHQ].

TALEN off-target detection.

Genomic DNA was extracted from genome edited iPSC clones using the DNeasy Blood \& Tissue Kit (Qiagen). The potential TALEN off-target sites were predicted in silico based on sequence homology using
the bioinformatics tool PROGNOS. ${ }^{15}$ The primers designed by PROGNOS were used to amplify the genomic regions of putative off-target sites by PCR. The PCR products were analyzed by Sanger sequencing.

ChIP-seq analysis.

The raw Fastq files of ChIP-seq were aligned to human genome (hg19) by TMAP (https://github.com/iontorrent/TS/tree/master/Analysis/TMAP), and then all duplicate reads aligned to same loci were removed. ${ }^{16}$ Peak calling was applied by HOMER, ${ }^{17}$ and the parameters are: style "factor", genome "hg 19 ", fold-change cutoff 4.0 of DNA input, fold-change cutoff of peak calling 2.0 , and p-value cutoff 0.0001 . Peaks were annotated by HOMER, and the nearest genes were assigned as the genes of the peaks. All sequences around coding promoters (upstream 400 bp , downstream 100 bp) were extracted and motif enrichment analysis was performed using HOMER. Then KEGG enrichment analysis was performed using the GeneAnswers package (http://www.bioconductor.org/packages/release/bioc/html/GeneAnswers. $\underline{\mathrm{html}}$), and adjusted p -value cutoff was 0.1 . All alignment bam files were processed by IGVTools, and loaded to IGV genome browser ${ }^{18}$ for the visualization of specific genes, all tracks normalized to 1 million reads.

Whole-cell patch-clamp recordings.

Contracting monolayer iPSC-CMs were enzymatically dispersed (Accutase, Sigma) and attached to Matrigel-coated glass coverslips (Warner, USA) for whole-cell patch clamp recordings. These recordings were conducted using an EPC-10 patch clamp amplifier (HEKA, Germany). 3-4 M Ω glass pipettes were prepared using thin-wall borosilicate glass (A-M System, USA) with a micropipette puller (Sutter Instrument, P-97, USA). Action potentials (APs) were recorded from iPSC-CMs suffused with Tyrode's solution at $37^{\circ} \mathrm{C}$. The Tyrode's solution consisted of $\mathrm{NaCl}(140 \mathrm{mM}), \mathrm{KCl}(5.4 \mathrm{mM}), \mathrm{CaCl}_{2}(1.8 \mathrm{mM})$, $\mathrm{MgCl}_{2}(1 \mathrm{mM})$, HEPES $(10 \mathrm{mM})$, and glucose $(10 \mathrm{mM})$; pH was adjusted to 7.4 with NaOH . The pipette solution consisted of $\mathrm{KCl}(120 \mathrm{mM}), \mathrm{MgCl}_{2}(1 \mathrm{mM})$, Mg -ATP (3 mM), HEPES (10 mM), and EGTA (10 mM); pH was adjusted to 7.2 with KOH . Data were acquired using PatchMaster software (HEKA, Germany) and digitized at 1.0 kHz . Data were analyzed using a custom-written MATLAB program.

Statistical analysis.

Unpaired two-tailed Student's t tests were used to determine the significance between two groups, assuming significance at $P<0.05$. The one-way analysis of variance (ANOVA) was used to determine whether there are any statistically significant differences among the means of three or more groups, with $P<0.05$ considered statistically significant. All values are expressed as the mean \pm SEM.

RESULTS

Design, construction, and characterization of TALEN constructs.
We selected 88 genes associated with cardiomyopathies and congenital heart diseases (Figure 1a and Online Table I), including genes implicated in syndromes for which clinical diagnosis may be challenging, such as CHARGE syndrome (chromodomain helicase DNA binding protein 7 (CHD7) mutation), Leigh syndrome (SURF1 mutations), Holt-Oram syndrome (TBX5 mutations), Noonan syndrome, LEOPARD syndrome, Raf-1 proto-oncogene, serine/threonine kinase (RAF1) and protein tyrosine phosphatase, non-receptor type 11 (PTPN11) mutations. To knock out these genes in the human genome, we designed TALENs that target sequences located around the start codon, ATG, of each gene (Figure 1b). We constructed one TALEN pair construct for each gene using a library of pre-assembled tetramers/trimers through a five-piece subcloning ligation. ${ }^{12}$ The details of the TALEN design for each gene and the respective target site are shown in Online Table I. To validate the genome editing activities of the TALEN library in human iPSCs, we quantified the level of NHEJ using the SMRT technology. ${ }^{14}$ Every TALEN pair tested was active and efficiently induced small deletions, insertions, or both at the target sites (Online Table II). The individual TALEN pairs induced mutations with a frequency ranging from 0.5% to 50% (Figure 1c), and the majority of the TALEN-mediated NHEJ outcomes were deletions of variable lengths within the spacer region, while insertion mutations were only observed in a few instances (Online Table II).

To illustrate the general utility of the TALEN-mediated NHEJ technique, we next targeted six individual genes (TNNT2, TBX5, lamin A/C (LMNA/C), myosin, heavy chain 7, cardiac muscle, beta (MYH7), ankyrin repeat domain 1 (cardiac muscle) (ANKRD1), and NK2 homeobox 5 (NKX2.5)) in human iPSCs. After TALEN transfection and FACS sorting, we screened single cell-derived clones for NHEJ events. We observed that the targeted loci were disrupted at high efficiency, with indels occurring in 33% to 100% of the clones screened (Table 1). These results indicate that all of our TALEN constructs are highly active and can be used for gene KO experiments.

Targeted disruption of the cardiac troponin T gene causes sarcomere disassembly.

Mutations associated with cardiomyopathies are commonly inherited in an autosomal dominant manner. Mutant proteins are thought to act through a dominant-negative mode that either interfere with normal function or assume a new function. In some instances, the mutant allele is inactivated, resulting in haploinsufficiency whereby a single functional copy of the gene is insufficient to maintain the normal phenotype. Although mutations in the cardiac troponin T (TNNT2) gene are commonly implicated in familial HCM, distinct mutations can also lead to DCM. ${ }^{19}$ To address whether haploinsufficiency of TNNT2 is responsible for HCM or DCM, we ablated either one or both TNNT2 alleles in human iPSCs by TALENmediated gene KO in a single round of TALEN targeting. We generated both monoallelic (heterozygous) $\mathrm{KO}\left(T N N T 2^{+/-}\right)$and biallelic (homozygous) KO (TNNT2 ${ }^{-/}$) iPSC lines (Figure 2a). These TNNT2-KO iPSC lines retained their pluripotency as assessed by immunostainining and gene expression assays of pluripotency markers (Online Figure I). Upon differentiation, the cardiac Troponin T protein (cTnT) was not detected in $T N N T 2^{-/}$iPSC-CMs, while comparable levels of cTnT were observed in wild-type and $T N N T 2^{+/}$iPSC-CMs (Figure 2b). At the mRNA level, $T N N T 2^{+/}$iPSC-CMs had reduced expression of the non-targeted transcript compared to the parental iPSC-CMs (Figure 2c), suggesting that the cTnT protein levels are not regulated at the transcription level. Most likely a post-transcriptional mechanism, such as an increase in ribosome translational kinetics or lower protein turnover rates, is responsible for the comparable levels of cTnT protein expression in the $T N N T 2^{+/}$and WT iPSC-CMs. At the functional level, we observed that $T N N T 2^{-/}$iPSC-CMs displayed severe sarcomeric disarray (Figure 2d) and exhibited impaired intracellular Ca^{2+} cycling (Online Figure II). In contrast, $T N N T 2^{+/-}$iPSC-CMs showed no functional or structural abnormalities, suggesting that one TNNT2 allele is sufficient to maintain normal cTnT protein
expression and cardiac myocyte structure and function (Figure 2 and Online Figure II). These results suggest that haploinsufficiency is unlikely to explain the pathogenesis of cardiomyopathies associated with TNNT2 mutations.

Phenotypic rescue of DCM by targeted allelic-specific KO in vitro.
To test this hypothesis, we next disrupted the starting codon of TNNT2 gene in a patient-specific iPSC line harboring a missense mutation in exon 12 of the TNNT2 gene (NM_001001430.2: c.517 C>T; p.R173W) (Figure 3a). ${ }^{20}$ We screened the TALEN-targeted clones for NHEJ events, and identified an iPSC clone with a disruption of the starting codon of the mutant TNNT2 $p . R 173 W$ allele (hereafter referred to as DCM-KO) and without any detectable off-target mutations (Figure 3a and Online Table III). This isogenic KO line retained pluripotency as assessed by both immunostaining and gene expression assays of pluripotency markers (Online Figure III). We differentiated the isogenic iPSC lines to iPSC-CMs and observed that the DCM-KO iPSC-CMs had undetectable ($<10 \%$) mRNA expression of the mutant TNNT2 allele when compared to the parental line, consistent with the activation of the nonsense-mediated mRNA decay mechanism following the NHEJ repair process (Online Figure IV). ${ }^{21}$ In addition, we observed that the loss of the mutant allele ameliorated the DCM phenotype in vitro, including sarcomere disarray (Figure $3 \mathrm{~b}-\mathrm{c}$) and Ca^{+2} cycling parameters (Figure 3d-e). Taken together, these data suggest that the TNNT2 p.R173W is a dominant negative mutation, and allelic-specific KO could ameliorate the DCM phenotype in vitro.

Modeling Holt-Oram syndrome in vitro.

Cardiac development is a critical and complex embryologic process requiring the integration of cell commitment, growth, looping, septation, and chamber specification. ${ }^{22}$ Multiple transcription factors, including NKX2.5, GATA4, and TBX5 play important roles in cardiac development, and genetic studies have implicated dominant mutations in these genes in human CHD. TBX5 is a T-box-containing transcription factor, which like other T-box family members, has been implicated in vertebrate tissue patterning and differentiation. ${ }^{23-25} T B X 5$ represents one of the few genes which, when mutated, is known to cause CHD. ${ }^{23}$ TBX5 haploinsufficiency is associated with Holt-Oram syndrome (HOS), a congenital disorder characterized by structural cardiac and limb abnormalities. ${ }^{26} \mathrm{Tbx5}$ heterozygous null ($\mathrm{Tbx} 5^{-/ 4}$) mice recapitulated the CHD seen in HOS patients, whereas homozygous null mice ($\mathrm{Tbx} 5^{-/}$) are growth arrested at E9.0 and die in utero by E10.5 due to severe heart defects. ${ }^{26}$ Although the expression of many genes such as NPPA, GJA5, IRX4, MYL2, GATA4, NKX2.5, and HEY2 was reduced in TBX5-null hearts, ${ }^{26}$ little is known about their downstream targets and hence the molecular basis of HOS is poorly understood.

As a proof-of-principle experiment for creating CHD models, we generated a human cell-based HOS in vitro model by utilizing TALEN-mediated NHEJ to knockout the TBX5 gene in iPSCs. In humans, TBX5 is highly regulated through alternative splicing and several transcript variants encoding different isoforms have been described for TBX5. Based on RNA-seq data of iPSC-CMs, the transcript variant 4 (NM_181486) is the predominant TBX5 isoform that is expressed in iPSC-CMs. Of note, the presence of this transcript was also reported in the initial identification of TBX5 as the HOS gene. ${ }^{27}$ The isoforms 1 (NM_000192) and 3 (NM_080717) were also detected in iPSC-CMs, albeit at very low levels (Online Figure V). Hence, we designed a TALEN pair and targeted the starting codon at exon 1 of the major isoform 4 and isoform 1 (Figure 4a). We identified an iPSC clone carrying a homozygous deletion, which resulted in frameshift mutations and an early termination of the TBX5 gene (hereafter referred to as TBX5-KO) (Figure 4b). The isogenic TBX5-KO iPSCs retained their pluripotency as assessed by immunostaining and gene expression assays of pluripotency markers (Online Figure VI). In order to check the specificity, we assessed potential off-target cutting sites in the edited clones using in silico prediction algorithms and did not detect any mutations in the 25 most likely off-target sites, suggesting a high specificity of the TBX5 TALEN pair (Online Table IV). We then differentiated the isogenic iPSC clones into iPSC-CMs and
confirmed that the TBX5 (isoforms 1 and 4) was not expressed at the protein level (Figure 4c). The directed differentiation protocol yielded cultures enriched ($70 \%-85 \%$) in cTnT (+) beating iPSC-CMs in both WT and TBX5-KO iPSC lines at day 15 post-differentiation (Online Figure VII) that displayed a typical sarcomeric morphology (Figure 4b). As HOS is associated with electrophysiological abnormalities, ${ }^{26,28}$ we next characterized the action potential (APs) of the isogenic iPSC-CMs. Both TBX5-KO and WT iPSCCMs displayed typical AP morphologies, including ventricular-, atrial-, and nodal-like subtypes (Figure 4d and Online Table V). However, we observed that 35% of TBX5-KO iPSC-CMs exhibited marked proarrhythmic activity characterized by the development of depolarizing humps during phase 2 and 3 of the action AP that resemble early after-depolarizations (EADs) when compared to the parental iPSC-CMs (Figure 4e).

Identification of novel TBX5 target genes.

To identify downstream targets and TBX5-dependent molecular networks, we next performed chromatin immunoprecipitation coupled to massively parallel sequencing (ChIP-seq) together with RNAseq analyses. RNA-seq analysis of isogenic iPSC-CMs revealed profound changes in global gene expression. We identified 349 up-regulated and 645 down-regulated gene transcripts in TBX5-KO when compared to the parental WT iPSC-CMs at a false discovery rate (FDR) of 5\%. Analysis of a representative subset of these genes by qRT-PCR in independent experiments validated our findings (Online Figure VIII). Of note, the most significant down-regulated gene was NPPA (Figure 5a and Figure 5b), a known direct target of TBX5. ${ }^{29}$ As available antibodies for TBX5 are not suitable for genome-wide ChIP-seq, we used a lentivirus to express a FLAG-tagged TBX5 in WT iPSC-CMs. We performed FLAG-mediated ChIP-seq to define the binding sites of TBX5 genome-wide. We identified 4,518 TBX5-bound peaks that were significantly enriched in the TBX5-FLAG sample compared with the control sample (FDR <0.01). To validate the ChIP-seq peaks, we next performed de novo motif analysis to investigate the predominant motifs enriched in TBX5 binding sites. As expected, the identified peaks were highly enriched for the previously experimentally discovered motif of TBX5 (Online Figure XI). ${ }^{29}$

Next, to define the direct TBX5 gene regulatory networks, we correlated TBX5 binding and TBX5mediated gene regulation by combining the gene set containing TBX5 peaks with the genes differentially expressed between the TBX5KO and WT iPSC-CMs. We annotated the TBX5-bound regions to the nearest transcription-starting site (TSS) and identified 341 candidate TBX5 direct target genes (118 up- and 223 down-regulated genes) (Figure 5c). To further refine the identification of TBX5 target genes, we analyzed the 223 downregulated gene set andrevealed important genes associated with cardiac myocyte function, such as cardiac myosin-binding protein C (MYBPC3), titin (TTN), calsequestrin (CASQ2), natriuretic peptide type A (NPPA), connexin 43 (GJA5), and sodium voltage-gated channel alpha subunit 5 (SCN5A). Remarkably, we found that 40% of the TBX5 candidate target genes were enriched in unexpected pathways ostensibly unrelated to processes associated with heart function. These pathways included extracellular matrix (ECM)-receptor interaction, focal adhesion, and protein digestion and absorption (Figure 5d). We found that the $T B X 5$ was bound to promoter regions of key components of the embryonic provisional matrix, including perlecan (HSPG2), ${ }^{30}$ fibronectin (FN1), ${ }^{31,32}$ fibulin-1 (FBLN1), ${ }^{33}$ collagen XIV (COL14A3), ${ }^{34}$ versican (VCAN), ${ }^{35-37}$ and versican-degrading protease ADMTS9. ${ }^{34}$ These ECM components play essential roles in cardiac development and are indispensable for normal heart development by regulating heart tube segmentation, chamber specification, endocardial cushion formation, interventricular septal formation, and cardiac myocyte differentiation. ${ }^{38}$ Taken together, these data suggest that genes encoding embryonic ECM components are direct TBX5 targets and represent potential novel candidate genes associated with HOS and CHD.

DISCUSSION

In the past decade, advances in cardiovascular genetics have uncovered a plethora of genes associated with inherited cardiomyopathies. Delineating the role of cardiomyopathy-associated genes and variants could provide a better understanding to the underlying pathogenic mechanisms, and provide potential targets for therapeutic interventions. The advent of new technologies, including iPSC and genome editing with designer nucleases, has provided an unprecedented opportunity for disease modeling in vitro. Since the development of a highly active TALEN architecture ${ }^{39}$ and simplified engineering platforms ${ }^{12}$, TALEN-mediated genome editing has been demonstrated in diverse cell types, including pluripotent stem cells. ${ }^{12,40-42}$ The relatively unconstrained target site requirements ${ }^{43}$ and the high degree of specificity of TALENs, provide a valuable tool for genome editing.

In principle, a TALEN pair can be targeted to any site in a genome, allowing more freedom and flexibility in target site selection with minimal off-target mutagenesis when compared to newer technologies such as CRISPR/Cas9. ${ }^{44-46}$ In this study, we designed, constructed, and validated TALEN vectors as an effective tool for gene KO in human iPSCs. The cTAL panel consists of 88 TALEN pairs that are designed to knockout genes that are associated with cardiomyopathies and CHD. Every TALEN pair was individually validated in human iPSCs and found to be active at the targeted locus. Furthermore, we have established that the target sites needs to be carefully chosen as TALEN pairs that target either the start codon (ATG) or regions immediately after are more effective in disrupting the open reading frame of the targeted gene. In contrast, indels at the 5-end UTR are inefficient in modifying the open reading frame. It should also be noted that even though the start codon is deleted, there might be a downstream translation starting sites that could function alternatively.

An important issue in cardiovascular genetics is determining whether putative mutations are causative of the disease, and establishing causality for putative disease causing variants is becoming increasingly clinically relevant. As a proof-of-concept, we showed that the DCM phenotype in iPSC-CMs was ameliorated by selectively disrupting the starting codon of the DCM-causing TNNT2 allele in a patientspecific iPSCs. In addition, using a similar strategy, we created a CHD model of HOS in vitro and identified a number of novel genes that are associated with TBX5 haploinsufficiency, providing an entry point to understanding the complex phenotypes caused by TBX5 haploinsufficiency and the pathogenesis of HOS. Taken together, these results demonstrated that TALEN-mediated gene KO strategies in iPSCs could be used to interrogate disease-causing mutations in a wide range of diseases and cell types as well as to model complex diseases in vitro.

In summary, combining iPSC and genome editing technologies holds great promise for advancing fundamental knowledge of the pathogenesis of inherited cardiomyopathies and CHD. The methods, strategies, and constructs developed in this study provide a validated, readily available resource for cardiovascular research that simplifies the custom generation of iPSC knock-out cell lines, and will therefore have a broad applicability for the generation of iPSC-based disease models and functional studies.

SOURCES OF FUNDING

This study was funded by the NIH 4R00 HL104002-03, AHA 15BGIA22730027, and Stanford CVI Seed Grant (I.K.); Prince Mahidol Award Foundation, Thailand (V.T.); the German Research Foundation (T.S.); U54 DH068158-01 (Pilot Project) (VS), California Institute of Regenerative Medicine (CIRM) RB3-2209 (VS); and AHA 13EIA14420025, NIH R01 HL126527, NIH R01 HL130020, NIH R01 HL123968, NIH R01 HL132875, NIH R01 HL133272, and NIH R24 HL1 17756 (JCW).

DISCLOSURE

None.

REFERENCES

1. Fahed AC, Gelb BD, Seidman JG, Seidman CE. Genetics of congenital heart disease: The glass half empty. Circ Res. 2013;112:707-720
2. Watkins H, Ashrafian H, Redwood C. Inherited cardiomyopathies. N Engl J Med. 2011;364:16431656
3. Kim H, Kim JS. A guide to genome engineering with programmable nucleases. Nat Rev Genet. 2014;15:321-334
4. Mittal V. Improving the efficiency of rna interference in mammals. Nat Rev Genet. 2004;5:355365
5. Karakikes I, Ameen M, Termglinchan V, Wu JC. Human induced pluripotent stem cell-derived cardiac myocytes: Insights into molecular, cellular, and functional phenotypes. Circ Res. 2015;117:80-88
6. Adams WJ, Zhang Y, Cloutier J, Kuchimanchi P, Newton G, Sehrawat S, Aird WC, Mayadas TN, Luscinskas FW, Garcia-Cardena G. Functional vascular endothelium derived from human induced pluripotent stem cells. Stem Cell Reports. 2013;1:105-113
7. Lee TH, Song SH, Kim KL, Yi JY, Shin GH, Kim JY, Kim J, Han YM, Lee SH, Lee SH, Shim SH, Suh W. Functional recapitulation of smooth muscle cells via induced pluripotent stem cells from human aortic smooth muscle cells. Circ Res. 2010;106:120-128
8. Hockemeyer D, Jaenisch R. Induced pluripotent stem cells meet genome editing. Cell Stem Cell. 2016;18:573-586
9. Doyle EL, Booher NJ, Standage DS, Voytas DF, Brendel VP, Vandyk JK, Bogdanove AJ. Tal effector-nucleotide targeter (tale-nt) 2.0: Tools for tal effector design and target prediction. Nucleic Acids Res. 2012;40:W117-122
10. Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by tal effectors. Science. 2009;326:1501
11. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. Breaking the code of DNA binding specificity of tal-type iii effectors. Science. 2009;326:15091512
12. Ding Q, Lee YK, Schaefer EA, Peters DT, Veres A, Kim K, Kuperwasser N, Motola DL, Meissner TB, Hendriks WT, Trevisan M, Gupta RM, Moisan A, Banks E, Friesen M, Schinzel RT, Xia F, Tang A, Xia Y, Figueroa E, Wann A, Ahfeldt T, Daheron L, Zhang F, Rubin LL, Peng LF, Chung RT, Musunuru K, Cowan CA. A talen genome-editing system for generating human stem cellbased disease models. Cell Stem Cell. 2013;12:238-251
13. Karakikes I, Senyei GD, Hansen J, Kong CW, Azeloglu EU, Stillitano F, Lieu DK, Wang J, Ren L, Hulot JS, Iyengar R, Li RA, Hajjar RJ. Small molecule-mediated directed differentiation of human embryonic stem cells toward ventricular cardiac myocytes. Stem Cells Transl Med. 2014;3:18-31
14. Hendel A, Kildebeck EJ, Fine EJ, Clark JT, Punjya N, Sebastiano V, Bao G, Porteus MH. Quantifying genome-editing outcomes at endogenous loci with smrt sequencing. Cell Rep. 2014;7:293-305
15. Fine EJ, Cradick TJ, Zhao CL, Lin Y, Bao G. An online bioinformatics tool predicts zinc finger and tale nuclease off-target cleavage. Nucleic Acids Res. 2014;42: 42
16. Maze I, Shen L, Zhang B, Garcia BA, Shao N, Mitchell A, Sun H, Akbarian S, Allis CD, Nestler EJ. Analytical tools and current challenges in the modern era of neuroepigenomics. Nat Neurosci. 2014;17:1476-1490
17. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and b cell identities. Mol Cell. 2010;38:576-589
18. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. Integrative genomics viewer. Nat Biotechnol. 2011;29:24-26
19. Hershberger RE, Pinto JR, Parks SB, Kushner JD, Li D, Ludwigsen S, Cowan J, Morales A, Parvatiyar MS, Potter JD. Clinical and functional characterization of tnnt2 mutations identified in patients with dilated cardiomyopathy. Circ Cardiovasc Genet. 2009;2:306-313
20. Sun N, Yazawa M, Liu J, Han L, Sanchez-Freire V, Abilez OJ, Navarrete EG, Hu S, Wang L, Lee A, Pavlovic A, Lin S, Chen R, Hajjar RJ, Snyder MP, Dolmetsch RE, Butte MJ, Ashley EA, Longaker MT, Robbins RC, Wu JC. Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci Transl Med. 2012;4:130ra147
21. Wen J, Brogna S. Nonsense-mediated mrna decay. Biochem Soc Trans. 2008;36:514-516
22. Epstein JA. Franklin h. Epstein lecture. Cardiac development and implications for heart disease. N Engl J Med. 2010;363:1638-1647
23. Papaioannou VE, Silver LM. The t-box gene family. Bioessays. 1998;20:9-19
24. Bruneau BG, Nemer G, Schmitt JP, Charron F, Robitaille L, Caron S, Conner DA, Gessler M, Nemer M, Seidman CE, Seidman JG. A murine model of holt-oram syndrome defines roles of the t-box transcription factor tbx5 in cardiogenesis and disease. Cell. 2001;106:709-721
25. Rodriguez-Esteban C, Tsukui T, Yonei S, Magallon J, Tamura K, Izpisua Belmonte JC. The t-box genes tbx4 and tbx5 regulate limb outgrowth and identity. Nature. 1999;398:814-818
26. Basson CT, Cowley GS, Solomon SD, Weissman B, Poznanski AK, Traill TA, Seidman JG, Seidman CE. The clinical and genetic spectrum of the holt-oram syndrome (heart-hand syndrome). N Engl J Med. 1994;330:885-891
27. Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J, Grayzel D, Kroumpouzou E, Traill TA, Leblanc-Straceski J, Renault B, Kucherlapati R, Seidman JG, Seidman CE. Mutations in human tbx5 [corrected] cause limb and cardiac malformation in holt-oram syndrome. Nat Genet. 1997;15:30-35
28. Nadadur RD, Broman MT, Boukens B, Mazurek SR, Yang X, van den Boogaard M, Bekeny J, Gadek M, Ward T, Zhang M, Qiao Y, Martin JF, Seidman CE, Seidman J, Christoffels V, Efimov IR, McNally EM, Weber CR, Moskowitz IP. Pitx2 modulates a tbx5-dependent gene regulatory network to maintain atrial rhythm. Sci Transl Med. 2016;8:354ra115
29. Mori AD, Zhu Y, Vahora I, Nieman B, Koshiba-Takeuchi K, Davidson L, Pizard A, Seidman JG, Seidman CE, Chen XJ, Henkelman RM, Bruneau BG. Tbx5-dependent rheostatic control of cardiac gene expression and morphogenesis. Dev Biol. 2006;297:566-586
30. Costell M, Carmona R, Gustafsson E, Gonzalez-Iriarte M, Fassler R, Munoz-Chapuli R. Hyperplastic conotruncal endocardial cushions and transposition of great arteries in perlecan-null mice. Circ Res. 2002;91:158-164
31. George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development. 1993;119:1079-1091
32. Georges-Labouesse EN, George EL, Rayburn H, Hynes RO. Mesodermal development in mouse embryos mutant for fibronectin. Dev Dyn. 1996;207:145-156
33. Cooley MA, Kern CB, Fresco VM, Wessels A, Thompson RP, McQuinn TC, Twal WO, Mjaatvedt CH, Drake CJ, Argraves WS. Fibulin-1 is required for morphogenesis of neural crest-derived structures. Dev Biol. 2008;319:336-345
34. Tao G, Levay AK, Peacock JD, Huk DJ, Both SN, Purcell NH, Pinto JR, Galantowicz ML, Koch M, Lucchesi PA, Birk DE, Lincoln J. Collagen xiv is important for growth and structural integrity of the myocardium. J Mol Cell Cardiol. 2012;53:626-638
35. Mjaatvedt CH, Yamamura H, Capehart AA, Turner D, Markwald RR. The cspg2 gene, disrupted in the hdf mutant, is required for right cardiac chamber and endocardial cushion formation. Dev Biol. 1998;202:56-66
36. Yamamura H, Zhang M, Markwald RR, Mjaatvedt CH. A heart segmental defect in the anteriorposterior axis of a transgenic mutant mouse. Dev Biol. 1997;186:58-72
37. Henderson DJ, Copp AJ. Versican expression is associated with chamber specification, septation, and valvulogenesis in the developing mouse heart. Circ Res. 1998;83:523-532
38. Rienks M, Papageorgiou AP, Frangogiannis NG, Heymans S. Myocardial extracellular matrix: An ever-changing and diverse entity. Circ Res. 2014;114:872-888
39. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ. A tale nuclease architecture for efficient genome editing. Nat Biotechnol. 2011;29:143-148
40. Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC, Zeitler B, Cherone JM, Meng X, Hinkley SJ, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R. Genetic engineering of human pluripotent cells using tale nucleases. Nat Biotechnol. 2011;29:731-734
41. Karakikes I, Stillitano F, Nonnenmacher M, Tzimas C, Sanoudou D, Termglinchan V, Kong CW, Rushing S, Hansen J, Ceholski D, Kolokathis F, Kremastinos D, Katoulis A, Ren L, Cohen N, Gho JM, Tsiapras D, Vink A, Wu JC, Asselbergs FW, Li RA, Hulot JS, Kranias EG, Hajjar RJ. Correction of human phospholamban r14del mutation associated with cardiomyopathy using targeted nucleases and combination therapy. Nat Commun. 2015;6:6955
42. Park CY, Kim J, Kweon J, Son JS, Lee JS, Yoo JE, Cho SR, Kim JH, Kim JS, Kim DW. Targeted inversion and reversion of the blood coagulation factor 8 gene in human ips cells using talens. Proc Natl Acad Sci U S A. 2014;111:9253-9258
43. Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK. Flash assembly of talens for highthroughput genome editing. Nat Biotechnol. 2012;30:460-465
44. Kuscu C, Arslan S, Singh R, Thorpe J, Adli M. Genome-wide analysis reveals characteristics of off-target sites bound by the cas 9 endonuclease. Nat Biotechnol. 2014;32:677-683
45. Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive cas9 to foki nuclease improves the specificity of genome modification. Nat Biotechnol. 2014;32:577-582
46. Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK. Dimeric crispr rna-guided foki nucleases for highly specific genome editing. Nat Biotechnol. 2014;32:569-576

FIGURE LEGENDS

Figure 1. The cTAL-KO panel. a) Genes associated with cardiomyopathies and congenital heart diseases included in the panel. b) Schematic representation of the gene KO strategy. c) Frequency distribution of the TALEN-mediated mutagenesis in human iPSCs as assessed by single-molecule real-time (SMRT) technology. The DNA fragments surrounding the TALEN target site was amplified and sequenced by PacBio RS as described in the "Materials and Methods" section. The mutation frequency of each TALEN pair was calculated as follows: mutation frequency $(\%)=$ number of reads containing a different length of deletion mutations/total number of reads harboring deletion mutation in the target locus $\times 100$. HCM, hypertrophic cardiomyopathy; DCM, dilated cardiomyopathy; LVNC, left ventricular non-compaction; ARVD, arrhythmogenic right ventricular dysplasia; RC, restrictive cardiomyopathy.

Figure 2. Generation of TNNT2 knockout iPSC clones. a) Schematic representation of TNNT2 gene structure. TALENs were designed to target the translation initiation site (ATG) at exon 2 of TNNT2 gene. Boxes indicate the TALEN binding sites. Deletions in the two alleles of each clone are indicated. b) Expression of cardiac troponin-T protein in isogenic wild-type (WT), heterozygous ($T N N T 2^{+/}$), and homozygous ($T N N T 2^{--}$) knockout iPSC-CMs. Representative blots of the protein expression and densitometric analysis of TNNT2 protein expression levels normalized to α-sarcomeric actinin (ACTN2) in isogenic iPSC-CMs as indicated. Data represent mean \pm SEM of three independent differentiation experiments, * $\mathrm{P}<0.05$. c) mRNA expression of the WT allele in the $T N N T 2^{+/}$and WT iPSC lines. A qPCR probe was designed to distinguish between the non-edited (WT) and the TALEN-mutated mRNA of the $T N N T 2^{+/}$iPSC-CMs. Gene expression levels were normalized to cardiac specific gene ACTN2. Data represent mean \pm SEM of three independent differentiation experiments, $* \mathrm{P}<0.05$. d) Representative immunofluorescence images of iPSC-CMs stained for the cardiac myocyte-specific markers cardiac troponin-T (TNNT2, red) and α-sarcomeric actinin (ACTN2, green). DNA was counterstained with DAPI (blue). Scale bar $=20 \mu \mathrm{~m}$. All the assays were performed at 30 days post-differentiation with one isogenic pair.

Figure 3. TNNT2 R173W is a dominant, causal DCM mutation. a) Generation of allelic-specific TNNT2 knockout iPSC clones. TALENs were designed to target the translation initiation site (ATG) at exon 2 of TNNT2 gene. Boxes indicate the TALEN binding sites. The nucleotide in red indicates the missense mutation for R173W. A deletion in the TNNT2 allele (R173W) allele is indicated. b) Representative immunofluorescence images of iPSC-CMs stained for the cardiac myocyte-specific markers cardiac troponin-T (TNNT2, red) and α-sarcomeric actinin (ACTN2, green). DNA was counterstained with DAPI (blue). Scale bar $=20 \mu \mathrm{~m}$. c) Quantification of disorganized sarcomeric staining pattern in WT, isogenic DCM, and DCM-KO iPSC-CMs. Data represent mean \pm SEM ($\mathrm{n}=150$ iPSC-CMs per iPSC line), ${ }^{*} \mathrm{P}<0.05$. d) Representative Ca^{2+} transients of iPSC-CMs as indicated. e) Quantification of calcium handling parameters in WT, isogenic DCM, and DCM-KO iPSC-CMs. Data represent mean \pm SEM ($\mathrm{n}=30 \mathrm{iPSC}$ CMs per line), ${ }^{*} \mathrm{P}<0.05$. All the assays were performed at 30 days post-differentiation with one isogenic pair.

Figure 4. Modeling HOS in human iPSCs. a) Schematic representation of TBX5 gene structure. TALENs were designed to target the translation initiation site (ATG) at exon 1 of TBX5 gene. Boxes indicate the TALEN binding sites. The TALEN-mediated deletions in the two alleles of the iPSC clone are shown. b) Representative immunofluorescence images of iPSC-CMs stained for the cardiac myocyte-specific marker cardiac troponin-T (cTnT). DNA was counterstained with DAPI (blue). c) Assessment of TBX5 protein expression in isogenic iPSC-CMs by western blot analysis; cTnT was used as a loading control. d) AP characterization in isogenic iPSC-CMs. d) TBX5-KO iPSC-CMs exhibit a proarrhythmia phenotype manifested as early after-depolarizations (EADs) during phase 2 and 3 of the AP waveform.

Figure 5. TBX5 regulates extracellular matrix (ECM) genes in iPSC-CMs. a) Top 20 differentially expressed genes between isogenic TBX5-KO and WT iPSC-CMs as assessed by RNA-seq. Blue bars represent up-regulated genes; red bars represent down-regulated genes. b) Representative browser tracks of NPPA gene expression in isogenic WT and TBX5-KO iPSC-CMs, and ChIP-seq footprint shows that TBX5 binds to the TSS of the NPPA gene. c) Intersection with ChiP-seq and transcriptional profiling identified 341 candidate TBX5 direct target genes. Blue circles represent up-regulated genes and red circles represent down-regulated genes (TBX5KO/WT); green circle represent TBX5-bound regions. d) A significant enrichment of extracellular matrix (ECM) components were observed in TBX5 direct target genes. The extracellular matrix (ECM)-receptor interaction and focal adhesion were the two most significant gene-sets over-represented among the 223 down-regulated (TBX5KO/WT) TBX5-bound genes.

NOVELTY AND SIGNIFICANCE

What Is Known?

- Advances in cardiovascular genetics have uncovered many genes associated with inherited cardiomyopathies.
- The use of human induced pluripotent stem cell-derived cardiac myocytes (iPSC-CMs) provides an unprecedented opportunity for the generation of human cell-based disease models to study genetic cardiomyopathies.

What New Information Does This Article Contribute?

- Transcription activator-like effector nucleases (TALENs) facilitate gene knockout (KO) with high efficiency, precision and accuracy.
- Successful creation of human-based KO cell models in vitro by combining genome editing and iPSCCM technologies.
- TALEN-mediated allele-specific KO ameliorate dilated cardiomyopathy (DCM)-associated phenotypes in iPSC-CMs in vitro.
- Modeling Holt-Oram syndrome (HOS) in iPSC-CMs in vitro uncovered novel genes and pathways regulated by TBX5.

The advent of human iPSC technology and an increasingly refined capacity to differentiate iPSCs into disease-relevant cell types, such as iPSC-CMs, provide an unprecedented opportunity for the generation of human cell-based disease models to study genetic cardiomyopathies. Genome editing can be used to change the DNA in iPSCs to aid the understanding of the biology of cardiomyopathy-associated genes and how they work. We can now make changes (or 'edits') to the DNA in specific location in the genome using an 'engineered nuclease', an enzyme that can be tailored to cut the genome in a specific place. Here we harnessed this technology to generate iPSC-based KO models of genetic cardiomyopathies to study the underlying pathogenic phenotypes and mechanisms, as well as to genetically correct the disease in vitro. Implementation of this unique and clinically relevant model system presents a significant advantage in cardiovascular research as it can circumvent complications in translating data from models across different species and biological characteristics. Ultimately, a better understanding of molecular mechanism(s) of genetic cardiomyopathies could provide opportunities for diagnosis and prognosis as well as enable the development of personalized therapeutic interventions.

Table 1. Efficiency of TALEN-Mediated Gene KO in iPSCs

Targeted Gene	NHEJ (\%)	Clones Screened	Mutants Clones	Efficiency $(\%)$
TNNT2	13.1	22	11	50.0
LMNA	12.5	12	8	66.7
MYH7	50.2	24	24	100
ANKRD1	6.7	24	11	45.8
TBX5	48.5	32	26	81.3
NKX2.5	9.4	26	20	76.9

Figure 1

A

B

C

Figure 2

WT

C-2

C-3
 TTTTGGAGGGAGAGCAGAGACCAT__CTGACATAGAAGAGGTGGTGGAAC2bp Del T T T T G G TTTTGGAGGGAGAGCAGAGACCATGTCTGACATAGAAGAGGTGGTGGAA

TNNT2 (---)

C

TNNT2 (+/-)

Figure 3

TTTTGGAGGGAGAGCAGAGACCATGTCTGACATAGAAGAGGTGGTGGAA AAAACCTCCCTCTCGTCTCTGGTACAGACTGTATCTTCTCCACCACCTT

DCM-KO
GAGACCA _ _ TCTGAC/.........TGG...........
R173W
GAGACCATGTCTGACCGG........... WT

C

\square normal \square disorganized

E

Figure 4

CTGGGCGCACCATGGCCGACGCAGACGAGGGCTTTGGCCTGGCGCACAC GACCCGCGTGGTACCGGCTGCGTCTGCTCCCGAAACCGGACCGCGTGTG

Alelle A
Alelle B

$$
C T G G G C G C A C C A T G G C C G A C G C A G A C G
$$

\qquad CCTGGCGCACAC

10bp del CTGGGCGCACCATGGCC \qquad TGGCGCACAC 22bp del

C

D

E

Figure 5

B

wT

TBX5-KO
TBX5 ChIP-seq

RefSeq Genes \qquad

D

Circulation Research

A Comprehensive TALEN-Based Knockout Library for Generating Human Induced Pluripotent Stem Cell-Based Models for Cardiovascular Diseases

Ioannis Karakikes, Vittavat Termglinchan, Diana A Cepeda, Jaecheol Lee, Sebastian Diecke, Ayal Hendel, Ilanit Itzhaki, Mohamed Ameen, Rajani Shrestha, Haodi Wu, Ning Ma, Ning-Yi Shao, Timon Seeger, Nicole A Woo, Kitchener D Wilson, Elena Matsa, Matthew H Porteus, Vittorio Sebastiano and Joseph C Wu

Circ Res. published online February 28, 2017;
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2017 American Heart Association, Inc. All rights reserved.

Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/early/2017/02/28/CIRCRESAHA.116.309948

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2017/02/28/CIRCRESAHA.116.309948.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints
Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/

SUPPLEMENTAL MATERIAL

A Comprehensive TALEN-Based Knockout Library for Generating Human Induced Pluripotent Stem Cell-Based Models for Cardiovascular Diseases

Ioannis Karakikes ${ }^{1,2 *}$, Vittavat Termglinchan ${ }^{1,3 *}$, Diana Cepeda ${ }^{4 *}$, Jaecheol Lee ${ }^{1}$, Sebastian Diecke ${ }^{1,8,9}$, Ayal Hendel ${ }^{5}$, Ilanit Itzhaki ${ }^{1}$, Mohamed Ameen ${ }^{1}$, Rajani Shrestha ${ }^{1}$, Haodi Wu ${ }^{1}$, Ning Ma ${ }^{1}$, Ning-Yi Shao ${ }^{1}$, Timon Seeger ${ }^{1}$, Nicole Woo ${ }^{1}$, Kitchener D. Wilson ${ }^{1,6}$, Elena Matsa ${ }^{1}$, Matthew H. Porteus ${ }^{5}$, Vittorio Sebastiano ${ }^{4,7}$, Joseph C. Wu ${ }^{1,3,4}$
${ }^{1}$ Stanford Cardiovascular Institute; ${ }^{2}$ Department of Cardiothoracic Surgery; ${ }^{3}$ Department of Medicine, Division of Cardiovascular Medicine; ${ }^{4}$ Institute of Stem Cell Biology and Regenerative Medicine; ${ }^{5}$ Department of Pediatrics; ${ }^{6}$ Department of Pathology; ${ }^{7}$ Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA;
${ }^{8}$ Berlin Institute of Health, Germany; ${ }^{9}$ Max Delbrueck Center, Berlin, Germany
*equal contribution

SUPPLEMENTAL METHODS

Genotyping iPSC clones. Genomic DNA was extracted from iPSC clones using the DNeasy Blood \& Tissue Kit (Qiagen). Genotyping at the TALEN target site was then performed for each sample by PCR amplification using the PrimeSTAR GXL DNA Polymerase (Clonetech) with a primer pair designed to amplify a $\sim 500 \mathrm{bp}$ fragment surrounding the TALEN targeted site. The PCR amplicons were purified with the QIAquick PCR Purification Kit (Qiagen) and blunt-end cloned with the StrataClone Blunt PCR Cloning Kit (Stratagene) per manufacturer's protocol. The cloning reactions mixture (2 ul) was transformed into competent cells and plated on agar containing ampicillin ($50 \mathrm{ug} / \mathrm{ml}$) treated with $40 \mu \mathrm{l}$ of 2% X-gal for blue-white color screening. After overnight incubation, white colonies were picked and grown for 16 hr at $37^{\circ} \mathrm{C}$ in ampicillin-containing LB broth. Plasmid DNA was extracted using the QIAprep Spin Miniprep Kit (Qiagen) and digested with EcoRI (Fermentas) to identify PCR insert-containing plasmids. Ten putative insert-containing plasmids were sequenced by Sanger to confirm presence of the mutant allele(s).

Immunocytochemistry. iPSCs were cultured on Matrigel-coated coverslips, fixed in 4\% paraformaldehyde (10 min at room temperature), and permeabilized in blocking/permeabilization buffer ($2 \% \mathrm{BSA} / 2 \% \mathrm{FBS} / 0.01 \%$ Triton-X in PBS) for 45 min at room temperature and incubated with the indicated primary antibodies re-suspended in PBS / 2\% BSA / 2\% FBS. Following an overnight incubation at $4^{\circ} \mathrm{C}$, the cells were washed three times in PBS-0.1\% Tween-20 and incubated with an Alexa-conjugated secondary antibody (Life Technologies) diluted in blocking/permeabilization buffer (1:750). Finally, after washing three times in PBS / 0.1% Tween-20, the cells were counterstained with DAPI (Life Technologies). The following
antibodies were used: mouse monoclonal anti-OCT4 (1:100, Santa Cruz; sc-5279), goat polyclonal anti-NANOG (1:100, R\&D systems; AF1997), mouse monoclonal anti-SOX2 (1:100, R\&D systems; MAB2018), and mouse monoclonal anti-SSEA-4 (1:100, R\&D systems; MAB1435). Similarly, iPSC-CMs were dissociated and cultured on Matrigel-coated coverslips for 4-5 days, then fixed in 4\% paraformaldehyde and permeabilized in blocking/permeabilization buffer for 45 min . The cells were incubated with Alexa-conjugated primary antibodies overnight at $4^{\circ} \mathrm{C}$, washed in PBS, and counterstained with DAPI. The following primary antibodies were used: mouse monoclonal anti-cardiac troponin T (1:200, Thermo Fisher Scientific; MS-295-P1) and mouse monoclonal anti-alpha actinin (1:200, Abcam; ab9465). For double staining experiments, the monoclonal antibodies were fluorescently labeled using the Zenon antibody labeling kit (Life Technologies), then applied directly to the samples. Immunofluorescence images were acquired using a Nikon epifluorescence microscope.

Western blot analysis. Cells were lysed in RIPA buffer (Sigma) supplemented with protease and phosphatase inhibitors (Roche) for 30 min on ice. Following lysis, cells were sonicated for 10 sec and then centrifuged $(12,000 \mathrm{~g})$ for 10 min at $4^{\circ} \mathrm{C}$. The protein concentration of the lysate was quantified using the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific) and $30 \mu \mathrm{~g}$ of protein lysate was used in SDS polyacrylamide gel electrophoresis and followed by blotting. The blots were probed with antibodies against cardiac Troponin T (Thermo Fisher Scientific; MS-295-P1), alpha-sarcomeric actin (Abcam; ab28052), and TBX5 (Abgent; AP14687a).

Chromatin immunoprecipitation. Differentiated $\mathrm{iPSC}-\mathrm{CMs}\left(2.5 \times 10^{7}\right)$ were infected (MOI $=$ 1) with a lentivirus expressing a FLAG-epitope tagged TBX5 (TBX5-FLAG in pLX303 was a
gift from William Hahn; Addgene plasmid \# 42563). After seven days, the cells were fixed with 1% formaldehyde for 10 min to generate protein-protein and protein-DNA crosslinks. The crosslinking reaction was stopped by adding 2.5 M glycine and incubated for 10 min at room temperature, washed twice with cold PBS. Cells were then scraped, mechanically sheared using sonication, and centrifuged at $10,000 \mathrm{~g}$ for 30 min at $4^{\circ} \mathrm{C}$. The supernatant was incubated overnight at $4^{\circ} \mathrm{C}$ with $10 \mu \mathrm{l}$ of either anti-FLAG (F1804, Sigma-Aldrich) or mouse IgG (sc-2027, Santa Cruz Biotechnology) that were covalently conjugated to Dynabeads ${ }^{\circledR}$ Protein A/G (Life Technologies). A small portion of the crosslinked, sheared chromatin was saved and served as the 'Input' negative control DNA. The next day, the beads were rinsed with sonication buffer (50 mM Hepes pH 7.9, $140 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ EDTA, 1% Triton X-100, 0.1% Na-deoxycholate, 0.1% SDS, 0.5 mM PMSF), high salt buffer (50 mM Hepes $\mathrm{pH} 7.9,500 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ EDTA, 1% Triton X-100, 0.1% Na-deoxycholate, 0.1% SDS, 0.5 mM PMSF), and LiCl buffer (20 mM Tris, pH 8.0, 1 mM EDTA, $250 \mathrm{mM} \mathrm{LiCl}, 0.5 \%$ NP-40, 0.5% Na-deoxycholate, 0.5 mM PMSF). The washed beads were incubated with elution buffer (50 mM Tris, $\mathrm{pH} 8.0,1 \mathrm{mM}$ EDTA, 1% SDS, 50 mM NaHCO 3) for 1 hr at $65^{\circ} \mathrm{C}$ and then reverse cross-linked by adding 5 M NaCl and incubated overnight at $65^{\circ} \mathrm{C}$. The immunoprecipitated DNA was treated with Rnase A and Proteinase K, and finally purified using the ChIP DNA clean and concentrator kit following the manufacturer's protocol (Zymo Research). Twenty ng of ChIP DNA or 'input' DNA was used for library preparation using the IonXpress Plus Fragment Library Kit according to the manufacturer's protocol (Publication Number 4473623 Revision B; Life Technologies). Briefly, the DNA was end-repaired and purified. The end-repaired DNA was ligated to Ion-compatible adapters, followed by nick repair to complete the linkage between barcode adapters and DNA inserts. The library was amplified by PCR and purified with two rounds of AMPure ${ }^{\circledR}$ XP
(Beckam-Coultier) bead capture to size-select fragments for downstream template preparation using the automated Ion Chef system. Sequencing was performed using the Ion PI Sequencing IC Kit and the Ion PI Chip v2 on the Ion Proton sequencer (Life Technologies).

Lentivirus production. The day prior to transfection, 5×10^{6} HEK293T cells (Life Technologies) were plated in 10 cm dish in DMEM media supplemented with 10% FBS. A transfection cocktail containing $2 \mu \mathrm{~g}$ FLAG-TBX5 (Addgene \#42563) plasmid, $1.5 \mu \mathrm{~g} \mathrm{pMD} 2 . \mathrm{G}$ envelope plasmid (Addgene \#12259), and $0.5 \mu \mathrm{~g}$ psPAX2 packaging plasmid (Addgene \#12260) was prepared in $50 \mu 1$ serum-free Opti-MEM (Life Technologies) and mixed with $12 \mu 1$ Lipofectamine 2000 (Life Technologies) diluted in $50 \mu \mathrm{l}$ serum-free Opti-MEM. After 10 min incubation at room temperature, the transfection mixture was added to the cells and incubated overnight at $37^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$. The next day, the media was replaced with serum-free OPTI-MEM and the transfected HEK293T cells were cultured for an additional 72 hr , and the supernatant was collected every 24 hr . The combined virus containing supernatant was centrifuged at 3000 g for 15 min to remove the cell debris, followed by concentration by PEG-it according to the manufacturer's protocol (System Biosciences). The infectious viral titer in the concentrated supernatant was estimated by transfection of HEK293T cells with 10 -fold serial dilutions $\left(10^{-1}\right.$ to $\left.10^{-6}\right)$, followed by quantifying the number of FLAG-expressing cells or colonies of cells at 72 hr post-infection.

SNP karyotyping. SNP karyotype analysis was performed on the Illumina's CytoSNP-850K genotyping microarrays, which measure approximately 850,000 SNPs across the genome. All genomic DNA was isolated from iPSC clones according to the manufacturer's protocol (Qiagen). Input genomic DNA (500 ng) was processed, hybridized to the array, and scanned on an Illumina

HiScan according to the manufacturer's instructions. CNVs were identified using the cnvPartition Pluginv.3.2.0 in GenomeStudio (Illumina) by assessing both the B-allele-frequency and $\log \mathrm{R}$ ratios.
$\mathbf{C a}^{2+}$ imaging. Dissociated iPSC-CMs were reseeded in Matrigel-coated 8-well Lab Tek II chambers (Nalge Nunc International). Cells were recovered for 3 days and were loaded with 5 $\mu \mathrm{M}$ Fluo-4 AM with 0.02% Pluronic F-127 (Molecular Probes) in Tyrode's solution for 15 min at $37^{\circ} \mathrm{C}$, and were washed with Tyrode's solution afterwards. Ca^{2+} imaging was conducted using a Zeiss LSM 510Meta confocal microscope (Carl Zeiss AG, Göttingen, Germany). Spontaneous Ca^{2+} transients of single beating iPSC-CMs were obtained using a time-lapse line scanning recording mode (512 pixels x 1920 lines) under 40X objective (Plan Apochromat, 0.95 NA) at $37^{\circ} \mathrm{C}$, and the raw data was analyzed using customized Interactive Digital Language (IDL) script. Ca^{2+} signal was normalized to the intracellular basal line (F_{0}), and transient amplitude was expressed as $\Delta \mathrm{F} / \mathrm{F}_{0}$.

Validation of RNA-seq data by qPCR Total RNAs were isolated from iPSC-CMs using the miRNeasy Mini kit (QIAGEN). $1 \mu \mathrm{~g}$ of RNA was used to synthesize cDNA using the iScript ${ }^{\mathrm{TM}}$ cDNA Synthesis kit (Bio-Rad). $0.25 \mu \mathrm{l}$ of the reaction was used to quantify gene expression by qPCR using TaqMan probes and TaqMan Universal PCR Master Mix. Expression values were normalized to the average expression of housekeeping gene 18s.

ONLINE FIGURE LEGENDS

Online Figure I. A) Representative immunofluorescence images of isogenic TNNT2-KO iPSC colonies stained for the pluripotency-associated markers OCT-4, NANOG, SOX-2 and SSEA-4, as indicated. B) Relative mRNA expression of pluripotency-associated genes NANOG, OCT-3/4 and SOX-2. Expression levels are expressed relative to the parental iPSC line. Values represent mean \pm SEM ($\mathrm{n}=3$).

Online Figure II. Intracellular calcium cycling analysis. A) Representative line-scan images and spontaneous Ca^{2+} transients for isogenic wild-type (WT), heterozygous (TNNT2 ${ }^{+}$), and homozygous (TNNT2-/) knockout iPSC-CMs. B) Comparison of tangential amplitude, time to peak, and decay tau of calcium imaging between each isogenic group. Data represents mean \pm SEM of $\mathrm{n}=25$ single iPSC-CMs per line. Unpaired two-tailed t -test with $* * \mathrm{P}<0.01$, n.s. $=$ not significant.

Online Figure III. A) Representative immunofluorescence images of isogenic DCM-KO iPSC colonies stained for the pluripotency-associated markers OCT-4, NANOG, SOX-2, and SSEA-4, as indicated. B) Relative mRNA expression of pluripotency-associated genes NANOG, OCT3/4, and SOX-2. Expression levels are expressed relative to the parental iPSC line. Values represent mean \pm SEM ($\mathrm{n}=3$). C) Digital karyotype analysis of the parental iPSC clone.

Online Figure IV. A) ddPCR for the TNNT2 R173W mutant and wild-type allelic discrimination from the parental- and DCM-KO iPSC-CMs. Green and blue dots represent droplets containing the mutant and the wild-type alleles, respectively. Pink line indicates the
detection threshold. B) Quantification of ddPCR shows the average frequency of the WT and mutant alleles in the iPSC-CMs as indicated. Values represent mean $\pm \operatorname{SEM}(\mathrm{n}=3)$.

Online Figure V. RNA-seq analysis of TBX5 gene isoforms in iPSC-CMs derived from the indicated iPSC lines generated by the Stanford CVI iPSC Biobank.

Online Figure VI. A) Representative immunofluorescence images of isogenic TBX5-KO iPSC colonies stained for the pluripotency-associated markers OCT-4, NANOG, SOX-2 and SSEA-4, as indicated. B) Relative mRNA expression of pluripotency-associated genes NANOG, OCT3/4, and SOX-2. Expression levels are expressed relative to the parental iPSC line. Values represent mean \pm SEM $(\mathrm{n}=3)$. c) Digital karyotype analysis of the parental iPSC clone.

Online Figure VII. Quantification of the cardiomyocyte differentiation efficiency. Flow cytometry analysis of the differentiation efficiency of isogenic TBX5-KO and parental WT iPSC lines at 15 days after differentiation. Representative contour plots of iPSC-CMs immunolabeled with isotype control antibody (IgG-Alexa-488) or cardiac troponin T antibody (cTnT-Alexa-488) in isogenic iPSC-CMs as indicated.

Online Figure VIII. Validation of RNA-seq data by qPCR. Quantitative real-time PCR of selective differentially expressed genes. Gene expressions were normalized to 18 s and expressed as fold-change relative to parental WT iPSC-CMs. A) Upregulated genes and B) downregulated genes from RNA-seq data. Values represent mean \pm SEM ($\mathrm{n}=3$).

Online Figure XI. In vitro TBX5 binding motifs. De novo motif discovery of in vitro motif by HOMER using the TBX5 peaks of the ChIP-seq data. Motifs found by de novo discovery were compared with available consensus and optimal in vitro motifs from the indicated reference.

SUPPLEMENTAL REFERENCES

1. Mori, A.D., et al. Tbx5-dependent rheostatic control of cardiac gene expression and morphogenesis. Developmental Biology 297, 566-586 (2006).
2. He, A., Kong, S.W., Ma, Q. \& Pu, W.T. Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart. Proceedings of the National Academy of Sciences of the United States of America 108, 5632-5637 (2011).

Online Figure I

Online Figure II

TNNT +/-
TNNT -/-

Online Figure III

Online Figure IV

A

Parental

DCM-KO

B

Online Figure V

Online Figure VI

A

C

 ailiminnocile
 （1illimineail
 anc｜l

 （IIITIIIID）$\vec{\omega}$
 IIIIIDCD $\stackrel{\rightharpoonup}{\circ}$
 （IIIIDC）जे （III पाII）จ （III）（D）
 【川】ロロ）$\vec{\omega}$ いロ $\vec{\omega}$ III）（II）： （IIID \geq （IIDO

Online Figure VII

Online Figure VIII

A

B

Online Figure IX

읃

Mori, et al

He, et al

Online Table I. Mutagenesis Efficiency of TALEN Pairs in human iPSCs as assessed by single-molecule real time (SMRT) technology. NHEJ, Non-homologous end joining.

Clone ID	Gene	TALEN Plus Strand Target Sequence	NHEJ \%
DC47B, DC48	ABCC9	T AAGAAGAAATGAGCC tttcatttggtggta ACAACATTTCTTCAT A	6\%
DC49B, DC50B	ACADS	T GGCCGCCGCGCTGCT cgecegggectegggec CTGCCCGCAGAGGTG A	44.80\%
DC73B, DC74B	ACADVL	T CGAGCCAGCGGCGCC cggagagattcggag ATGCAGGCGGCTCGG A	42.67\%
DC51, DC52	ACTC1	T GCAGAACCCCCTGAA getgtgecaagatgtgt GACGACGAGGAGACC A	13.37\%
DC53, DC54	ACTN2	T CGCGCCCCGCCGCAG ccceggecaaccgageg CCATGAACCAGATAG A	2.82\%
DC59, DC60	ANKRD1	T CCTTCAGCCAACATG atggtactgaaagtagag GAACTGGTATGTAAG A	6.73\%
DC65B, DC66B	BAG3	T GAGCGCCGCCACCCA ctegeceatgatge AGGTGGCGTCCGGCA A	8.40\%
DC67B, DC68B	CALR3	T GCACACCCCCATGGC cegggetttggtceag CTCTGGGCCATATGC A	3.46\%
DC69, DC70	CASQ2	T GGGAACGAGAAACAA aggttttcceaaatgaag AGAACTCACTTGTTT A	0.23\%
DC71C, DC72B	CAV3	T GGATCCCCCCAGCTC tgegatgatggeagaag AGCACACAGATCTCG A	10.34\%
DC75B, DC76B	CHD7	T GGTTTGGAGGAGCCG tgtgttggaagaagatg GCAGATCCAGGAATG A	0.33\%
DC77C, DC78	COX15	T GTCATCAGTATGCAG cgattgetetttceg CCGTTGAGGGCCTTG A	10.21\%
DC79B, DC80	CRYAB	T CACACTCACCTAGCC accatggacatcgec ATCCACCACCCCTGG A	11.49\%
DC81B, DC82B	CSRP3	T GACCTTGACCAGATA gtettcaagatgecaaac TGGGGCGGAGGCGCA A	1.61\%
DC83C, DC84B	CTF1	T GAAGGGAGCCGGGAT cagccaggggccagcat GAGCCGGAGGGAGGG A	19.70\%
DC209, DC210	CTNNA3	T GTTTGTGCACAGGCA gcatgtcagctgaa ACACCAATCACATTG A	7.72\%
DC85C, DC86B	DES	T CACCATGAGCCAGGC ctactegtecagce AGCGCGTGTCCTCCT A	33.75\%
DC133, DC134	DMD	T ATCGCTGCCTTGATA tacacttttcaaaatget TTGGTGGGAAGAAGT A	0.25\%
DC135, DC136	DNAJC19	T GGTGAGTGCGGCCTT ceggtettettggegace TCCGGCCCAGGCCTC A	1.13\%
DC87, DC88	DSC2	T GCCCCGAGCCCTCTC catggaggeagcecge CCCTCCGGCTCCTGG A	28\%
DC89B, DC90B:	DSG2	T GCGGCGGCGGGAGGC ggaggegagggtgegat GGCGCGGAGCCCGGG A	1.78\%
DC91B, DC92B	DSP	T GCCCGCCGACATGAG ctgcaacggagget CCCACCCGCGGATCA A	4.86\%
DC137, DC138	DTNA	T ACACATTGTAACTAT tttgtctcatagaatgat TGAAGATAGTGGGAA A	4.67\%
DC93, DC94	EMD	T CCGCCTGAGCCCGCA cecgecatggacaact ACGCAGATCTTTCGG A	49.67\%
DC95, DC96	EYA4	T GAGAAAACCACATGG aagactcccaggattt AAATGAACAATCAGT A	21.71\%
DC139, DC140	FHL1	T CCAGCTACAAGGTGG gcaccatggcggaga AGTTTGACTGCCACT A	5.80\%
DC141, DC142	FHL2	T TGCTGAAAAGCCAGG agtcaaaatgactgagc GCTTTGACTGCCACC A	3.55\%
DC97, DC98	FKTN	T CAAAAGACAACCAAG tgagcagcacagacta ATGAGTAGAATCAAT A	2.92\%

DC99, DC100	FXN	T GTGGACTCTCGGGCG ecgegeagtagcegge CTCCTGGCGTCACCC A	6.15\%
DC101, DC102	GATA4	T ATCAGAGCTTGGCCA tggecgecaaccacggge CGCCCCCCGGTGCCT A	0.49\%
DC103, DC104	GATAD1	T CTGCGCCCGCGGGGG ecgecegagceggecace ATGCCGCTGGGCCTG A	5.66\%
DC105, DC106	GLA	T ATGCTGTCCGGTCAC cgtgacaatgcaget GAGGAACCCAGAACT A	12.75\%
DC211, DC212	HOPX	T GCCCCGCAGCGCGCA gggaceatgtcggeggag ACCGCGAGCGGCCCC A	3\%
DC107, DC108	ILK	T CGGCGCCGGGACGCT getatggacgacattt TCACTCAGTGCCGGG A	5.44\%
DC109, DC110	JAG1	T CCCGAGTGCCCGCGG cgegeggegcageg ATGCGTTCCCCACGG A	7.99\%
DC111, DC112	JPH2	T TGTCAGGGGCTATGA tgagatgagtgggggce GCTTCGACTTTGATG A	1.56\%
DC113, DC114	JUP	T CCTTTGTGCCCCCAG tagccacgatggaggtga TGAACCTGATGGAGC A	0.83\%
DC115B, DC116	LAMA4	T TGAGCTCAGCCTGGC getcggttetgect CTGTGGCTCCTCTGG A	4.51\%
DC117, DC118	LAMP2	T CTGCGGGGTCATGGT gtgettecgectett CCCGGTTCCGGGCTC A	12.14\%
DC45\&DC46:	LMNA	T CCGGGACCCCTGCCC cgegggeagcgetgeca ACCTGCCGGCCATGG A	12.54\%
DC35 \& DC36	LMNA	T GCCAACCTGCCGGCC atggagaccecgtcceag CGGCGCGCCACCCGC A	18.70\%
DC119, DC120	MYLCD	T CGGCAGCTGTTGTGG ggcaccatgcgagge TTCGGGCCAGGCTTG A	26.77\%
DC121, DC122	MYBPC3	T CGTGCCTGGTGTGAC gtetetcaggatgectga GCCGGGGAAGAAGCC A	0.69\%
DC123, DC124	MYH6	T CTCTGACCCAGGGGA agcaccaagatgaccg ATGCCCAGATGGCTG A	9.32\%
DC43 \& DC44	MYH7	T GGCAGTCTTTGGGGC tgecgececetace TGCGCAAGTCAGAGA A	6.08\%
DC41 \& DC42	MYH7	T TCGGAGATGGCAGTC tttggggetgecgecec CTACCTGCGCAAGTC A	50.22\%
DC125, DC126	MYL2	T GCTGGGTCCTTTCCA ccatggtgagtacaaggg CTCCAGGAGGTGATG A	0.51\%
DC127, DC128	MYL3	T GTACTTACAGCCCCC aatggeccecaaaaage CAGAGCCCAAGAAGG A	7.78\%
DC129, DC130	MYLK2	T CCCTACCTCATGGCG acagaaaatggagcagtt GAGCTGGGAATTCAG A	5.98\%
DC131, DC132	MYOM1	T CCTTCAAGGGGCACA ggatgtetttgcetttt ATCAGAGGTGCCACC A	0.84\%
DC143, DC144	MYOZ2	T AATACTATGATGAAG cagagaaaacagcaa GCAACAGCCATCATG A	1.44\%
DC145, DC146	MYPN	T TTGTGACAGCATGCA agacgacagcataga AGCTTCTACTTCCAT A	24.84\%
DC213, DC214	NEBL	T GAGGGTCCCTGTATT tgaggatataaaagat GAAACTGAAGAAGAA A	1.27\%
DC147, DC148	NEXN	T AGAGCAAACATGAAT gatattteccaaaag GCTGAGGTAAGTCTC A	11.87\%
DC57B \& DC58	NKX2.5	T GAGACTGGCGCTGCC accatgttceccagc CCTGCTCTCACGCCC A	9.40\%
DC149, DC150	PDLIM3	T CAGAGCCCGGTGGGC gggaggaaggcgge ATGCCCCAGACGGTG A	1.19\%
DC151, DC152	PKP2	T CGGTCGCCCCCACCG gececatggcagcecceg GCGCCCCAGCTGAGT A	4.43\%
DC215, DC216	PLN	T TCCTGTCCTGCTGGT atcatggagaaagteca ATACCTCACTCGCTC A	0.73\%

DC153, DC154	PRKAG2	T CAACTTCTGGTTAGA gttatgggaagcgeggtt ATGGACACCAAGAAG A	4.81\%
DC155, DC156	PSEN1	T CTATACAGTTGCTCC aatgacagagttac CTGCACCGTTGTCCT A	2.31\%
DC157, DC158	PSEN2	T CCAGGTGCTTCCAGA ggcagggetatgetca CATTCATGGCCTCTG A	11.91\%
DC159, DC160	PTPN11	T CGCGGAGCCGGAGGG cgggaggaacatgac ATCGCGGAGGTGAGG A	3.87\%
DC161, DC162	RAF1	T AAGCTGCATCAATGG agcacatacaggga GCTTGGAAGACGATC A	4.06\%
DC163, DC164	RBM20	T CCCGGGCGGGTCTCG ceccgeatggtgetgg CAGCAGCCATGAGCC A	3.60\%
DC165, DC166	RYR2	T GGCCGATGGGGGCGA gggcgaagacgagatcea GTTCCTGCGAACTGT A	0.83\%
DC167, DC168	SCN5A	T GAGAAGATGGCAAAC ttectattacetcgggge ACCAGCAGCTTCCGC A	1.94\%
DC217, DC218	SCO2	T GTTTCCAGGAGCATC agatccatgetgetget GACTCGGAGCCCCAC A	2.43\%
DC169, DC170	SDHA	T CCGGGGCCTGTCGCG getgetgagegetegg CGCCTGGCGCTGGCC A	3.64\%
DC171, DC172	SGCD	T GAGTGAAGGGACCAG gtggagatggtgag TAATTCCCGGGAGCG A	0.32\%
DC173, DC174	SLC25A20	T GACAGACGGAGTGAC agacggactgacca TGGCCGACCAGCCAA A	2.21\%
DC219, DC220	SLC25A4	T GAGAGCGTCGAGCTG tcaccatgggtgatca CGCTTGGAGCTTCCT A	7.63\%
DC175, DC176	SURF1	T GGCGGCGGTGGCTGC gttgcagctggggetgeg GGCGGCGGGGCTGGG A	3.87\%
DC177, DC178	SYNE1	T CCGGAGGGACCATGG caacetccagaggggect CCCGGTGTCCTCGGG A	0.48\%
DC179, DC180	TAZ	T GGGAGCGCCGGCCGC gggcegggtgggga TGCCTCTGCACGTGA A	0.91\%
DC181, DC182	TBX1	T GCCAGGATCCCCGGC agggatgcacttca GCACCGTCACCAGGG A	5.24\%
DC183, DC184	TBX20	T GGCCAGGACCGCGTG ctggggaccatggagt TCACGGCGTCCCCCA A	15.26\%
DC61B \& DC62	TBX5	T GGGCGCACCATGGCC gacgeagacgaggge TTTGGCCTGGCGCAC A	48.45\%
DC185, DC186	TCAP	T GAGGAGTGATCATGG ctacctcagagetgaget GCGAGGTGTCGGAGG A	1.32\%
DC187, DC188	TGFB3	T CCCCCTGGCCTCTCT tcceagetcacacatg AAGATGCACTTGCAA A	13.38\%
DC189, DC190	TMEM43	T CCCACCATGGCCGCG atgtgagtatccecg GGCCAGCCGGGCCAC A	2.43\%
DC191B, DC192B	TMPO	T GGGGAGGGGGCTTCG cagatccccgagatge CGGAGTTCCTGGAAG A	5.05\%
DC193, DC194	TNNC1	T CCTGTGAGCCGCCAG catggatgacatctaca AGGCTGCGGTGAGGG A	7.25\%
DC195, DC196	TNNI3	T CCCGGCCTGAGTCTC agcatggcggatgggtga GTGATGCCCCAAGGC A	1.70\%
DC39 \& DC40	TNNT2	T TTGGAGGGAGAGCAG agaccatgtctgaca TAGAAGAGGTGGTGG A	2.79\%
DC37 \& DC38	TNNT2	T TTTCTCCTTTTGGAG ggagagcagagacca TGTCTGACATAGAAG A	13.14\%
DC197, DC198	TPM1	T CGCCGCCGCCACCAT ggacgecatcaagaag AAGATGCAGATGCTG A	6.45\%
DC199, DC200	TTN	T TTTCAGAGTGCCTAG aagatgacaactcaag CACCGACGTTTACGC A	0.72\%
DC201, DC202	TTR	T TGGCAGGATGGCTTC teategtetgetect CCTCTGCCTTGCTGG A	2.86\%

| DC203, DC204 | TXNRD2 | T GGCGGTGGCGCTGCG gggattaggagggegct TCCGGTGGCGGACGC A | 0.57% |
| :--- | :--- | :--- | :--- | :---: |
| DC205, DC206 | VCL | T TCGCCGCCCCGCTCG ccgccgcgatgecagtg TTTCATACGCGCACG A | 1.25% |
| DC207, DC208 | ZASP | T GCAGAGGCGGCCGCT gacagcaccagcatgtct TACAGTGTGACCCTG A | 3.09% |

Online Table II. Frequency and position of TALEN-mediated mutagenesis in human iPSCs. Deletions and insertions of the top 5 variants are shown.

ABCC9 Mutations in 134 of 2738 sequences $\approx 4.9 \%$

AGAAGAAATGAGCCTTTCATTTTGTGGTAACAACATTTCTTCATATAATATCAACGATGGTGTACTACAAAATTCCTGCTTTGTGGAT AGAAGAAATGAGCCTTTCATTTTGTGGTAACAACATTTCT----------TCAACGATGGTGTACTACAAAATTCCTGCTTTGTGGAT AGAAGAAATGAGCCTTTCATTTTGTGGTAACAACATTTCTTC----AATATCAACGATGGTGTACTACAAAATTCCTGCTTTGTGGAT
 AGAAGAAATGAGCCTTTCATTTTGTGGTAACAAC--------------AATATCAACGATGGTGTACTACAAAATTCCTGCTTTGTGGAT AGAAGAAATGAGCCTTTCATTTTGTGGTAAC------------------AATATCAACGATGGTGTACTACAAAATTCCTGCTTTGTGGAT

ACADS Mutations in 888 of 1982 sequences $\approx 44.8 \%$
GGGACTGTGTCTGTCGCCCATGGCCGCCGCGCTGCTCGCCCGGGCCTCGGGCCCTGCCCGCAGAGGTGAGTGCGCTGGGGATCCGTAC GGGACTGTGTCTGTCGCCCATGGCCGCCGCGCTGCTCGCC-------CGGGCCCTGCCCGCAGAGGTGAGTGCGCTGGGGATCCGTAC

 GGGACTGTGTCTGTCGCCCATGGCCGCCGCG-----------------------------1GCCCGCAGAGGTGAGTGCGCTGGGGATCCGTAC

ACADVL Mutations in 1092 of 2559 sequences $\approx 42.7 \%$
CGCCAGAGCTGGGTCAGAGCTCGAGCCAGCGGCGCCCGGAGAGATTCGGAGATGCAGGCGGCTCGGATGGCCGCGAGCTTGGGGCGGC CGCCAGAGCTGGGTCAGAGCTCGAGCCAGCGGCGCC-----------CGGAGATGCAGGCGGCTCGGATGGCCGCGAGCTTGGGGCGGC CGCCAGAGCTGGGTCAGAGCTCGAGCCAGCGGCGCC-----------CGGAGATGCAGGCGGCTCGGATGGCCGCGAGCTT-GGGCGGC CGCCAGAGCTGGGTCAGAGCTCGAGCCAGCGGCGC------------CGGAGATGCAGGCGGCTCGGATGGCCGCGAGCTTGGGGCGGC CGCCAGAGCTGGGTCAGAGCTCGAGCCAGCGGCGCCCGGA---------GAGATGCAGGCGGCTCGGATGGCCGCGAGCTTGGGGCGGC CGCCAGAGCTGGGTCAGAGC-----------------------------TCGGAGATGCAGGCGGCTCGGATGGCCGCGAGCTTGGGGCGGC

ACTC1 Mutations in 451 of 3372 sequences $\approx 13.4 \%$
CGCCCTCСССТССТСAACCTGCAGAACCCCCTGAAGCTGTGCCAAGATGTGTGACGACGAGGAGACCACCGCCCTGGTGTGCGACAAC CGCCCTCСССТССТСАACCTGCAGAACCCCCTGAAGC-----------TGTGTGACGACGAGGAGACCACCGCCCTGGTGTGCGACAAC СGСССТССССТССТСААССТGСАGAAСССССТGAAGC-------------TGTGACGACGAGGAGACCACCGCCCTGGTGTGCGACAAC CGCCCTCCCCTCCTCAACCTGCAGAACCCCCTGAAGCTGTGCcaaCAAGATGTGTGACGACGAGGAGACCACCGCCCTGGTGTGCGAC CGСССТССССТССТСААССТGСАGAACССССТGAAGCTG---CAAGATGTGTGACGACGAGGAGACCACCGCCCTGGTGTGCGACAAC CGCCCTCCCCTCCTCAACCTGCAGAACCCCCTG----------AAGATGTGTGACGACGAGGAGACCACCGCCCTGGTGTGCGACAAC

ACTN2 Mutations in 44 of 1563 sequences $\approx 2.8 \%$
GCCCGTGCGTCCGAGCCCCTCGCGCCCCGCCGCAGCCCCGGCCAACCGAGCGCCATGAACCAGATAGAGCCCGGCGTGCAGTACAACT GCCCGTGCGTCCGAGCCCCTCGCGCCCCGCCGCAGCC------------------CCATGAACCAGATAGAGCCCGGCGTGCAGTACAACT CCCG-------------------/ /-----------------------CGAGCGCCATGAACCAGATAGAGCCCGGCGTGCAGTACAACT GCCCGTGCGTCCGAGCCCCTCGCGCCCCGCCGCAGCCCCG----------GCGCCATGAACCAGATAGAGCCCGGCGTGCAGTACAACT GCCCGTGCGTCCGAGCCCCTCGCGCCCCGCCGCAGCC--------CCGAGCGCCATGAACCAGATAGAGCCCGGCGTGCAGTACAACT GCCCGTGCGTCCGAGCCCCTCGCGCCCCGCCGtAGCCCCG----------GCGCCATGAACCAGATAGAGCCCGGCGTGCAGTACAACT

ANKRD1 Mutations in 81 of 1203 sequences $\approx 6.7 \%$
ACAGAAAAACATACAAGACTCCTTCAGCCAACATGATGGTACTGAAAGTAGAGGAACTGGTATGTAAGATGCATTAATTTTATAAAAT AGAC-------------------/ /------------------------ACAGAAAAACATACAAGACTCCTTCAGCCAACATGATG----------GTAGAGGAACTGGTATGTAAGATGCATTAATTTTATAAAAT ACAGAAAAACATACAAGACTCCTTCAGCCAACATGATGGT-------------------ACTGGTATGTAAGATGCATTAATTTTATAAAAT ACAGAAAAACATACAAGACTCCTTCAGCCAACATGATGGTACTG-AAGTA---GAACTGGTATGTAAGATGCATTAATTTTATAAAAT ACAGAAAAACATACAAGACTCCTTCAGCCAACATGATGGTACTG-AAGTA---GgACTGGTATGTAAGATGCATTAATTTTATAAAAT

BAG3
Mutations in 290 of 3453 sequences $\approx 8.4 \%$
CGGGCAGACCCCAACCCAGCATGAGCGCCGCCACCCACTCGCCCATGATGCAGGTGGCGTCCGGCAACGGTGACCGCGACCCTTTGCC CGGGCAGACCCCAACCCAGCATGAGCGCCGCCACCCACTC---------GCAGGTGGCGTCCGGCAACGGTGACCGCGACCCTTTGCC CGGGCAGACCCCAACCCAGCATGAGCGCCGCCACCCACTC------GATGCAGGTGGCGTCCGGCAACGGTGACCGCGACCCTTTGCC CGGGCAGACCCCAACCCAGCATGAGCGCCGCCACCCACTCGCC---GtTGCAGGTGGCGTCCGGCAACGGTGACCGCGACCCTTTGCC CGGGCAGACCCCAACCCAGCATGAGCGCCGCCACCCACTCG-----GATGCAGGTGGCGTCCGGCAACGGTGACCGCGACCCTTTGCC CGGGCAGACCCCAACCCAGCATGAGCGCCGCCACCCACTCGC-----------aGTGGCGTCCGGCAACGGTGACCGCGACCCTTTGCC

CALR3 Mutations in 96 of 2778 sequences $\approx 3.5 \%$

GGCGGCGACCGGAAGCGCAGTGCACACCCCCATGGCCCGGGCTTTGGTCCAGCTCTGGGCCATATGCATGCTGCGAGTGGCGCTGGCT GGCGGCGACCGGAAGCGCAGTGCACACCCCCA------------TGGTCCAGCTCTGGGCCATATGCATGCTGCGAGTGGCGCTGGCT GGCGGCGACCGGAAGCGCAGTGCACACCCCCATGGCCCG------GGTCCAGCTCTGGGCCATATGCATGCTGCGAGTGGCGCTGGCT GGCGGCGACCGGAAGCGCAGTGCACACCCCCATGGCCCGGG-------CCAGCTCTGGGCCATATGCATGCTGCGAGTGGCGCTGGCT GGCGGCGACCGGAAGCGCAGTGCACACCCCCATGGCCCGG---------------GCTCTGGGCCATATGCATGCTGCGAGTGGCGCTGGCT

CASQ2 Mutations in 13 of 5713 sequences $\approx 0.2 \%$
ATTCTGCACACGGCATATTTGGGAACGAGAAACAAAAGTTTTCCCAAATGAAGAGAACTCACTTGTTTATTGTGGGGATTTATTTTCT ATTCTGCACACGGCATATTTGGGAACGAGAAAC-AAAGT---------TGAAGAGAACTCACTTGTTTATTGTGGGGATTTATTTTCT ATTCTGCACACGGCATATTTGGGAACGAGAAACAAAAGTTTTCCCaaatgAAATGAAGAGAACTCACTTGTTTATTGT-GGGATTTAT ATTCTGCACACGGCATATTTGGGAACGAGAAACAAAAG-TTTCCCaaatgaAAATGAAGAGAACTCACTTGTTTATTGTGGGGATTTA ATTCTGCACACGGCATATTTGGGAACGAGAAACAAAAG-TTTCtCActttgTGAAGtGAACTCACTTGTTTATTGTGGGGATTTATTT ATTCTGCACACGGCATATTTGGGAACGAGAAACAAAAG--TTCCCaaatgaAAATGAAGAGAACTCACTTGTTTATTGTGGGGATTTA

WT
$\Delta 10 \times 15$
$\triangle 4 \times 7$
$\Delta 21 \times 6$
$\Delta 12 \quad x 4$
$\Delta 15 \times 4$

WT
$\Delta 7 \times 49$
$\triangle 18 \times 44$
$\triangle 13 \times 41$
$\Delta 22 \times 12$
$\Delta 17 \times 11$

WT
$\Delta 10 \times 418$
$\Delta 11 \times 45$
$\Delta 11 \times 45$
$\Delta 8 \times 31$
$\triangle 25 \times 18$

WT
$\triangle 10 \times 77$
$\triangle 12 \times 12$
$+3 \times 11$
$\Delta 3 \times 10$
$\triangle 10 \times 10$

WT
$\Delta 15 \times 4$
$\Delta 94 \times 2$
$\Delta 9 \times 2$
$\Delta 8 \times 2$
$\Delta 9 \quad(\Delta 10+1) \quad x 2$

WT
$\triangle 211 \times 9$
$\Delta 9 \times 6$
$\Delta 15 \times 4$
$\Delta 4 \times 2$
$\Delta 4 \quad(\Delta 5+1) \quad x 2$

WT
$\triangle 9 \times 70$
$\Delta 6$ x8
$\Delta 3(\Delta 4+1) \quad x 6$
$\Delta 5 \times 5$
$\Delta 10 \quad(\Delta 11+1) \quad x 4$

WT
$\Delta 12 \times 10$
$\Delta 6 \quad \times 7$
$\Delta 7 \times 5$
$\triangle 11 \times 5$
$\Delta 18 \times 5$

WT
$\triangle 10 \quad x 2$
$+4(\Delta 1+5) \times 1$
$+5(\Delta 1+6) \times 1$
$+2(\Delta 5+7) \times 1$
$+4(\Delta 2+6) \times 1$

CAGCTCGGATCTCCTCCTGTGGATCCCCCCAGCTCTGCGATGATGGCAGAAGAGCACACAGATCTCGAGGCCCAGATCGTCAAGGATA CAGCTCGGATCTCCTCCTGTGGATCCCCCCAGCTCTGCGATGAT----GcAGAGCACACAGATCTCGAGGCCCAGATCGTCAAGGATA CAGCTCGGATCTCCTCCTGTGGATCCCCCCAGCTCTGC---GATGGCAGAAGAGCACACAGATCTCGAGGCCCAGATCGTCAAGGATA CAGCTCGGATCTCCTCCTGTGGAT-CCCCCAGCTCTGCGATGAT----GcAGAGCACACAGATCTCGAGGCCCAGATCGTCAAGGATA CAGCTCGGATCTCCTCCTGTGGATCCCCCCAGCTCT---------GCAGAAGAGCACACAGATCTCGAGGCCCAGATCGTCAAGGATA CAGCTCGGATCTCCTCCTGTGGATCCCCCCAGCTCTGCGAT-------GAAGAGCACACAGATCTCGAGGCCCAGATCGTCAAGGATA

CHD7
CAGGCAAGCTCCTGAGCTGTGGTTTGGAGGAGCCGTGTGTTGGAAGAAGATGGCAGATCCAGGAATGATGAGTCTTTTTGGCGAGGAT CAGGCAAGCTCCTGAGCTGTGGTTTG--------------------GAAGATGGCAGATCCAGGAATGATGAGTCTTTTTGGCGAGGAT CAGGCAAGCTCCTGAGCTGTGGTTTGGAGGAGCCGTGTGTTGGA----------AGATCCAGGAATGATGAGTCTTTTTGGCGAGGAT CAGGCAAGCTCCTGAGCTGTGGTTTGGAGGAGCCGTGTG----------------------TCCAGGAATGATGAGTCTTTTTGGCGAGGAT CAGGCAAGCTCCTGAGCTGT-GTTTGGAGGAGCCGTGTGTTG---GAAGATGGCAGATCCAGGAATGATGAGTCTTTTTGGCGAGGAT

C0X15 Mutations in 322 of 3153 sequences $\approx 10.2 \%$
TGGAAGAGGTGGCTGTTCCCTGTCATCAGTATGCAGCGATTGCTCTTTCCGCCGTTGAGGGCCTTGAAGGGGAGGCAGTATCTGCCGC TGGAAGAGGTGGCTGTTCCCTGTCATCAGTATGCAGCGA------------------TTGAGGGCCTTGAAGGGGAGGCAGTATCTGCCGC TGGAAGAGGTGGCTGTTCCCTGTCATCAGTATGCAG--------------------CGTTGAGGGCCTTGAAGGGGAGGCAGTATCTGCCGC TGGAAGAGGTGGCTGTTCCCTGTCATCAGTATGCAGCGATTG-----aggGCCGTTGAGGGCCTTGAAGGGGAGGCAGTATCTGCCGC TGGAAGAGGTGGCTGTTCCCTGTCATCAGTATGCAGCGATT----cTTCCGCCGTTGAGGGCCTTGAAGGGGAGGCAGTATCTGCCGC TGGAAGAGGTGGCTGTTCCCTGTCATCAGTATGCAGCGAT---TCTTTCCGCCGTTGAGGGCCTTGAAGGGGAGGCAGTATCTGCCGC

CRYAB Mutations in 319 of 2776 sequences $\approx 11.5 \%$
CTGACCAGCCAGCTGACCCCTCACACTCACCTAGCCACCATGGACATCGCCATCCACCACCCCTGGATCCGCCGCCCCTTCTTTCCTT CTGACCAGCCAGCTGACCCCTCACACTCACCTAG-----------------------CACCACCCCTGGATCCGCCGCCCCTTCTTTCCTT CTGACCAGCCAGCTGACCCCTCACACTCACCTA-----------------GCCATCCACCACCCCTGGATCCGCCGCCCCTTCTTTCCTT CTGACCAGCCAGCTGACCCCTCACACTCACCTAGCCA-------------------- CACCACCCCTGGATCCGCCGCCCCTTCTTTCCTT CTGACCAGCCAGCTGACCCCTCACACTCACCTAGCCA------------- CCATCCACCACCCCTGGATCCGCCGCCCCTTCTTTCCTT CTGACCAGCCAGCTGACCCCTCACAC-----------------------TCGCCATCCACCACCCCTGGATCCGCCGCCCCTTCTTTCCTT

CSRP3 Mutations in 43 of 2679 sequences $\approx 1.6 \%$
CTTTATGTCCCCTTAGACTTGACCTTGACCAGATAGTCTTCAAGATGCCAAACTGGGGCGGAGGCGCAAAATGTGGAGCCTGTGAAAA CTTTATGTCCCCTTAGACTTGACCTTGACCAGATAGTCTCC-----GCCAAACTGGGGCGGAGGCGCAAAATGTGGAGCCTGTGAAAA СTTTATGTCCCCTTAGACTTGACCTTGACCAGATAGTCTT---------CAAACTGGGGCGGAGGCGCAAAATGTGGAGCCTGTGAAAA CTTTATGTCCCCTTAGACTTGACCTTGACCAGATA------------------------GGGGCGGAGGCGCAAAATGTGGAGCCTGTGAAAA CTTTATGTCCCCTTAGACTTGACCTTGACCAGATAGTCTTCAAGAT-----------------GAGGCGCAAAATGTGGAGCCTGTGAAAA CTTTATGTCCCCTTAGACTTGACCTTGACCAGATAGTCTTCAAGActatccGCCAAACTGGGGCGGAGGCGCAAAATGTGGAGCCTGT

CTF1 Mutations in 771 of 3914 sequences $\approx 19.7 \%$
CCCCCTCGAAAGGGGGGCGTGAAGGGAGCCGGGATCAGCCAGGGGCCAGCATGAGCCGGAGGGAGGGAAGTCTGGGTAAGGGGCTGAG CCCCCTCGAAAGGGGGGCGTGAAGGGAGCCGGGATCA-------GCCAGCATGAGCCGGAGGGAGGGAAGTCTGGGTAAGGGGCTGAG CCCCCTCGAAAGGGGGGCGTGAAGGGAGCCGGGAT------------CAGCATGAGCCGGAGGGAGGGAAGTCTGGGTAAGGGGCTGAG CCCCCTCGAAAGGGGGGCGTGAAGGGAGCCGGGATCAGCCA---GCCAGCATGAGCCGGAGGGAGGGAAGTCTGGGTAAGGGGCTGAG CCCCCTCGAAA-GGGGGCGTGAAGGGAGCCGGGATCA-------GCCAGCATGAGCCGGAGGGAGGGAAGTCTGGGTAAGGGGCTGAG CCCCCTCGAAAGGGGGGCGTGAAGGGAGCCGGGATCAGCCAGG---CAGCATGAGCCGGAGGGAGGGAAGTCTGGGTAAGGGGCTGAG

CTNNA3 Mutations in 230 of 2979 sequences $\approx 7.7 \%$
TTATTAATAAGCATCCTTTTGTGTTTGTGCACAGGCAGCATGTCAGCTGAAACACCAATCACATTGAATATCGATCCTCAGGATCTGC TTATTAATAAGCATCCTTTTGTGTTTGTGCACAGG--------CAGCTGAAACACCAATCACATTGAATATCGATCCTCAGGATCTGC TTATTAATAAGCATCCTTTTGTGTTTGTGCACAGGCAGCA-------TGAAACACCAATCACATTGAATATCGATCCTCAGGATCTGC TTATTAATAAGCATCCTTTTGTGTTTGTGCACAGGCAGCATG-----TGAAACACCAATCACATTGAATATCGATCCTCAGGATCTGC TTATTAATAAGCATCCTTTTGTGTTTGTGCACAGGCAG-----CAGCTGAAACACCAATCACATTGAATATCGATCCTCAGGATCTGC TTATTAATAAGCATCCTTTTGTGTTTGTGCACAG------------GCTGAAACACCAATCACATTGAATATCGATCCTCAGGATCTGC

DES Mutations in 1056 of 3129 sequences $\approx 33.7 \%$
CCGCCAGCCTCGCCCGCGCCGTCACCATGAGCCAGGCCTACTCGTCCAGCCAGCGCGTGTCCTCCTACCGCCGCACCTTCGGCGGGGC CCGCCAGCCTCGCCCGCGCCGTCACCATGAG------------------CAGCCAGCGCGTGTCCTCCTACCGCCGCACCTTCGGCGGGGC CCGCCAGCCTCGCCCGCGCCGTCACCATG----------------------AGCCAGCGCGTGTCCTCCTACCGCCGCACCTTCGGCGGGGC CCGCCAGCCTCGCCCGCGCCGTCACCATGAGCCAG----------------GCCAGCGCGTGTCCTCCTACCGCCGCACCTTCGGCGGGGC CCGCCAGCCTCGCCCGCGCCGTCACCATG-----------------------AGCCAGCGCGTGTCCTCCTACCGCCGCACCTTCGGCGGGG-

DMD

Mutations in 4 of 1589 sequences $\approx 0.3 \%$

AACTTTTACCAGGTTTTTTTTATCGCTGCCTTGATATACACTTTTCAAAATGCTTTGGTGGGAAGAAGTAGAGGACTGTTGTAAGTAC AACTTTTACCAGGTTTTTTTTATCGCTGCCTTGATATACA-------------CTTTGGTGGGAAGAAGTAGAGGACTGTTGTAAGTAC AACTTTTACCAGGTTTTTTTTATCGCTGCCTTGATATACACTT------- gGCTTTGGTGGGAAGAAGTAGAGGACTGTTGTAAGTAC AACTTTTACCAGGTTTTTTTTATCGCTGCCTTGATATACAC------AAATGCTTTGGTGGGAAGAAGTAGAGGACTGTTGTAAGTAC

DNAJC19 Mutations in 42 of 3727 sequences $\approx 1.1 \%$

GGGAGCCCAGCCGGAGCCATGGTGAGTGCGGCCTTCCGGTCTTCTTGGCGACCTCCGGCCCAGGCCTCAACCTCAGCTCCCCGCCTCG GGGAGCCCAGCCGGAGCCATGGTGAGT------------------------GCGACCTCCGGCCCAGGCCTCAACCTCAGCTCCCCGCCTCG GGGAGCCCAGCCGGAGCCATGGTGAGTGCGGCCTTCCGGTC----TGGCGACCTCCGGCCCAGGCCTCAACCTCAGCTCCCCGCCTCG GGGAGCCCAGCCGGAGCCATGGTGAGTGCGGCCTTCCGGTCTT----GCGACCTCCGGCCCAGGCCTCAACCTCAGCTCCCCGCCTCG
 GGGAGCCCAGCCGGAGCCATGGTGAGTGCGGCCTTCCGGT------------------------CAGGCCTCAACCTCAGCT-CCCGCCTCG

WT
$\Delta 4 \quad(\Delta 5+1) \quad \times 15$
$\Delta 3 \times 14$
$\Delta 5 \quad(\Delta 6+1) \quad x 12$
$\Delta 9 \times 8$
$\Delta 7 \quad \times 7$

WT
$\Delta 19 \times 3$
$\triangle 10 \quad x 2$
$\Delta 18 \quad x 1$
$\Delta 4 \quad x 1$

WT
$\triangle 15 \times 13$
$\Delta 16 \times 5$
$\Delta 5 \quad(\Delta 8+3) \quad x 4$
$\Delta 4 \quad(\Delta 5+1) \quad x 4$
$\Delta 3 \times 4$

WT
$\Delta 19 \times 26$
$\Delta 15 \times 21$
$\Delta 16 \times 17$
$\Delta 12 \times 11$
$\Delta 20 \times 9$

WT
$\Delta 5(\Delta 6+1) \times 3$
$\Delta 8 \quad x 2$
$\Delta 19 \times 2$
$\Delta 14 \times 1$
$+5(\Delta 1+6) \quad x 1$

WT
$\Delta 7 \times 253$
$\triangle 11 \times 50$
$\Delta 3 \times 42$
$\Delta 8 \times 19$
$\Delta 3 \times 18$

WT
$\triangle 8 \times 38$
$\Delta 7 \quad \times 28$
$\Delta 5 \times 5$
$\Delta 5 \times 5$
$\Delta 11 \times 5$

WT
414×88
$\triangle 18 \times 70$
$\triangle 13 \times 27$
$\Delta 19 \times 20$
$\Delta 15 \times 18$

WT
$\Delta 12 \times 2$
$\Delta 7 \quad(\Delta 8+1) \quad x 1$
$\Delta 6 \quad \mathrm{x} 1$

DSC2

WT
$\triangle 20 \times 6$
$\triangle 4 \mathrm{x} 2$
$\triangle 4 \mathrm{x} 1$
$\Delta 19 \times 1$
$\Delta 20 \times 1$

CCCGACGCTCGGCCCGCGACCTGCCCCGAGCCCTCTCCA--------------------------------------

 CCCGACGCTCGGCCCGCGACCTGCCCCGAGCCCTCTCCATGGAGgcaGCAGCCCGCCCCTCCGGCTCCTGGAACGGAGCCCTCTGCCG
$\Delta 26 \times 87$
$\triangle 27 \times 43$
427 x18
421×17
+3 x14

WT
$\Delta 8 \times 3$
$\triangle 14 \times 2$
$\Delta 22 \times 2$
$\Delta 4 \times 1$
$+4(\Delta 1+5) \times 1$
$\Delta 3 \mathrm{x} 1$

WT
$\triangle 9 \times 3$
$\triangle 12 \times 3$
$\Delta 11 \times 3$
$\Delta 6 \times 2$
$\Delta 25 \times 2$

WT
$+4 \times 7$
+3 x6
$\Delta 8 \times 5$
$\Delta 12 \times 5$
$\Delta 16 \times 4$

WT
$\Delta 15 \times 171$
$\triangle 14 \times 54$
$\triangle 13 \times 33$
421×26
$\Delta 14 \times 25$

WT
$\triangle 197 \times 5$
$\Delta 9 \times 4$
$\Delta 16 \times 4$
$\Delta 198$ x2
$\Delta 3 \mathrm{x} 2$

WT
$\Delta 241 \times 6$
$\Delta 124$ x5
$\triangle 223 \times 5$
$\triangle 242 \times 5$
$\Delta 15 \times 5$

WT

$+3 \times 14$
$\Delta 5 \times 6$
$\Delta 114 \times 5$
$\Delta 175 \times 4$
$+4 \mathrm{x} 4$

WT
$\Delta 8 \mathrm{x} 1$
$\Delta 5 \times 1$
$\Delta 9 \mathrm{x} 1$
$\Delta 10 \mathrm{x} 1$

FXN Mutations in 156 of 2537 sequences $\approx 6.1 \%$
GGCGGCAGACCCGGAGCAGCATGTGGACTCTCGGGCGCCGCGCAGTAGCCGGCCTCCTGGCGTCACCCAGCCCGGCCCAGGCCCAGAC GGCGGCAGACCCGGAGCAGCATGTGGACTCTCGGGC-----------GCCGGCCTCCTGGCGTCACCCAGCCCGGCCCAGGCCCAGAC GGCGGCAGACCCGGAGCAGCATGTGGA---------------------------------1CCTGGCGTCACCCAGCCCGGCCCAGGCCCAGAC GGCGGCAGACCCGGAGCAGCATGTGGACTCTCGGGCGCCGCGC---AGCCGGCCTCCTGGCGTCACCCAGCCCGGCCCAGGCCCAGAC GGCGGCAGACCCGGAGCAGCATGTGGACTCTCGGGC--------------------GCCTCCTGGCGTCACCCAGCCCGGCCCAGGCCCAGAC

WT
$\Delta 11 \times 7$
$\Delta 26 \times 5$
$\Delta 3 \times 4$
$\Delta 15 \times 3$
$\Delta 27 \times 3$

GATA4
Mutations in 14 of 2857 sequences $\approx 0.5 \%$
GGGAGCTCGCAGGGACCATGTATCAGAGCTTGGCCATGGCCGCCAACCACGGGCCGCCCCCCGGTGCCTACGAGGCGGGCGGCCCCGG GgGAGCTCGCAGGGACCATGTATCAGAGCTTGGCCATGGCCGCCAACCACGGG----CCCCCGGTGCCgTACGAGGCGGGCGGCCCCG
 GGGAGCTCGCAGGGACCATGTATCAGAGCTTGGCCATGGCCGCCA--CACG----GCCCCCCGGTGCCTACGAGGCGGGCGGCCCCGG GGGAGCTCGCAGGGACCATGTATCAGAGCTTGGCCATGGCCGCCAaccACCACGGGCCGCCCCCCGGTGCCTACGAGGCGGGCGGCCC GGGAGCTCGCAGGGACCATGTATCAGAGCTTGGCCATGGCCGCcaaCAACCACGGGCCGCCCCCCGGTGCCTACGAGGCGGGCGGCCC

GATAD1

Mutations in 217 of 3832 sequences $\approx 5.7 \%$

CCGTCCGCCATTCCCGTGTCTCTGCGCCCGCGGGGGCCGCCCGAGCCGGCCACCATGCCGCTGGGCCTGAAGCCCACCTGCAGCGTAT

 CCGTCCGCCATTCCCGTGTCTCTGCGCCCGCGGGGGCCGCCCGA---GGCCACCATGCCGCTGGGCCTGAAGCCCACCTGCAGCGTAT CCGTCCGCCATTCCCGTGTCTCTGCGCCCGCGGG---------------GGCCACCATGCCGCTGGGCCTGAAGCCCACCTGCAGCGTAT

GLA Mutations in 553 of 4338 sequences $\approx 12.7 \%$
CTGAGGAACCCAGAACTACATCTGGGCTGCGCGCTTGCGCTTCGCTTCCTGGCCCTCGTTTCCTGGGACATCCCTGGGGCTAGAGCAC CTGAGGAACCCAGAACTACATCTGGGCTGCGCGCTTG-----CGCTTCCTGGCCCTCGTTTCCTGGGACATCCCTGGGGCTAGAGCAC CTGAGGAACCCAGAACTACAT--------------------------------TGGCCCTCGTTTCCTGGGACATCCCTGGGGCTAGAGCAC CTGAGGAACCCAGAACTACATCTGGGCTGCG---------------
 CTGAGGAACCCAGAACTACATCTGGGCTGCGCGCTTGCG---CGCTTCCTGGCCCTCGTTTCCTGGGACATCCCTGGGGCTAGAGCAC

HOPX

Mutations in 75 of 2504 sequences $\approx 3 \%$
CACCGCCGCCGCTTCTCCCTGCCCCGCAGCGCGCAGGGACCATGTCGGCGGAGACCGCGAGCGGCCCCACAGAGGACCAGGTGGAAAT CACCGCCGCCGCTTСTСССTGCCCCGCAGCGCGCAGG-------------------- GACCGCGAGCGGCCCCACAGAGGACCAGGTGGAAAT CACCGCCGCCGCTTCTCCCTGCCCCGCAGCGC----------------- GCGGAGACCGCGAGCGGCCCCACAGAGGACCAGGTGGAAAT CACCGCCGCCGCTTCTCCCTGCCCCGCAGCGCGCAGGGACCATGT------- GACCGCGAGCGGCCCCACAGAGGACCAGGTGGAAAT

ILK Mutations in 193 of 3547 sequences $\approx 5.4 \%$
GGCTTCCCCAATCCAGGGGACTCGGCGCCGGGACGCTGCTATGGACGACATTTTCACTCAGTGCCGGGAGGGCAACGCAGTCGCCGTT GGCTTCCCCAATCCAGGGGACTCGGCGCCGGGACGCTGCTATG---GACATTTTCACTCAGTGCCGGGAGGGCAACGCAGTCGCCGTT GGCTTCCCCAATCCAGGGGACTCGGCGCCGG------------------ GACATTTTCACTCAGTGCCGGGAGGGCAACGCAGTCGCCGTT GGCTTCCCCAATCCAGGGGACTCGGCGCCGGGACGCTGCTAT----GACATTTTCACTCAGTGCCGGGAGGGCAACGCAGTCGCCGTT GGCTTCCCCAATCCAGGGGACTCGGCGCCGGGACGCTGCT----------ATTTTCACTCAGTGCCGGGAGGGCAACGCAGTCGCCGTT GGCTTCCCCAATCCAGGGGACTCGGCGCCGGGACGCTGCTATGgacGACGACATTTTCACTCAGTGCCGGGAGGGCAACGCAGTCGCC

JAG1 Mutations in 125 of 2479 sequences $\approx 5 \%$
CCCCACGGACGCGCGGCCGGTCCGGGCGCCCCCTAAGCCTCCTGCTCGCCCTGCTCTGTGCCCTGCGAGCCAAGGTAGGAGCCCTTCT CCCCACGGACGCGCGGCCGGTCCGGGCGCCCCCTAA----------- GCCCTGCTCTGTGCCCTGCGAGCCAAGGTAGGAGCCCTTCT CCCCACGGACGCGCGGCCGGTCCGGGCGCCCCCTAAGCCTCctgCTGCTCGCCCTGCTCTGTGCCCTGCGAGCCAAGGTAGGAGCCCT CCCCACGGACGCGCGGCCGGTCCGGGCGCCCCCTAAGCCTCCTG-------CTGCTCTGTGCCCTGCGAGCCAAGGTAGGAGCCCTTCT CCCCACGGACGCGCGGCCGGTCCGGGCGCCCCCTAAGCCT----------CCTGCTCTGTGCCCTGCGAGCCAAGGTAGGAGCCCTTCT CCCCACGGACGCGCGGCCGGTCCGGGCGCCCCCTAAGCCTCCTGCTC-----GCTCTGTGCCCTGCGAGCCAAGGTAGGAGCCCTTCT

【PH2 Mutations in 41 of 2629 sequences $\approx 1.6 \%$
ACGCTGGAGGACGGGGAGGTTGTCAGGGGCTATGATGAGATGAGTGGGGGCCGCTTCGACTTTGATGATGGAGGGGCGTACTGCGGGG ACGCTGGAGGACGGGGAGGTTGTCAGGGGCTATGATGAGATGAGT-----CCGCTTCGACTTTGATGATGGAGGGGCGTACTGCGGGG
 ACGCTGGAGGACGGGGAGGTTGTCAGGGGCTATGATGAGATGAGTGGG---CGCTTCGACTTTGATGATGGAGGGGCGTACTGCGGGG ACGCTGGAGGACGGGGAGGTTGTCAGGGGCTATGATGAGATGAGTGG----CGCTTCGACTTTGATGATGGAGGGGCGTACTGCGGGG ACGCTGGAGGACGGGGAGGTTGTCAGGGGCTATGATGAGATGAGTG--------cTCGACTTTGATGATGGAGGGGCGTACTGCGGGG

【UP Mutations in 34 of 4100 sequences $\approx 0.8 \%$
TTCCTGCTTCCTGACTTCCTCCTTTGTGCCCCCAGTAGCCACGATGGAGGTGATGAACCTGATGGAGCAGCCTATCAAGGTGACTGAG
 TTCCTGCTTCCTGACTTCCTCCTTTGTGCCCCCAGTAGCCAtC-----AGGTGATGAACCTGATGGAGCAGCCTATCAAGGTGACTGA TTCCTGCTTCCTGACTTCCTCCTTTGTGCCCCCAGTAGCCacgACGATGGAGGTGATGAACCTGATGGAGCAGCCTATCAAGGTGACT TTCCTGCTTCCTGACTTCCTCCTTTGTGCCCCCA------------GGAGGTGATGAACCTGATGGAGCAGCCTATCAAGGTGACTGAG TTCCTGCTTCCTGACTTCCTCCTTTGTGCCCCCAGTAGCCACGATG--------GAACCTGATGGAGCAGCCTATCAAGGTGACTGAG

LAMA4

Mutations in 57 of 1263 sequences $\approx 4.5 \%$

GATGTCAGCGGAGAAATGGCTTTGAGCTCAGCCTGGCGCTCGGTTCTGCCTCTGTGGCTCCTCTGGAGCGCTGCCTGCTCCCGCGCCG GATGTCAGCGGAGAAATGGCTTTGAGCTCAGC--------------CTGCCTCTGTGGCTCCTCTGGAGCGCTGCCTGCTCCCGCGCCG GATGTCAGCGGAGAAATGGCTTTGAGCTCAGCCTGGCGCTCGGT------TCTGTGGCTCCTCTGGAGCGCTGCCTGCTCCCGCGCCG GATGTCAGCGGAGAAATGGCTTTGAGCTCAGCCTGGCGC-----TCTGCCTCTGTGGCTCCTCTGGAGCGCTGCCTGCTCCCGCGCCG GATGTCAGCGGAGAAATGGCTTTGAGCTCAGCCTGGCG--------CTGCCTCTGTGGCTCCTCTGGAGCGCTGCCTGCTCCCGCGCCG

LAMP2 Mutations in 254 of 2092 sequences $\approx 12.1 \%$
TCGCCGCCGTCGCCGCCTGCTCTGCGGGGTCATGGTGTGCTTCCGCCTCTTCCCGGTTCCGGGCTCAGGGCTCGTTCTGGTCTGCCTA TCGCCGCCGTCGCCGCCTGCTCTGCGGGGTCATGGTGTG-------CTCTTCCCGGTTCCGGGCTCAGGGCTCGTTCTGGTCTGCCTA TCGCCGCCGTCGCCGCCTGCTCTGCGGGGTCATGGTGTG---------CTTCCCGGTTCCGGGCTCAGGGCTCGTTCTGGTCTGCCTA
 TCGCCGCCGTCGCCGCCTGCTCTGCGGGGTCATGGTGT------GCCTCTTCCCGGTTCCGGGCTCAGGGCTCGTTCTGGTCTGCCTA

WT
$\Delta 3(\Delta 4+1) \quad x 1$
$\Delta 33(\Delta 34+1) \mathrm{x} 1$
$\Delta 6 \times 1$
$+3 \mathrm{x} 1$
$+3 \times 1$

WT
$\triangle 29 \times 14$
$\Delta 17 \times 8$
$\triangle 30 \times 6$
$\triangle 3 \times 5$
$\Delta 13 \times 5$

WT
$\Delta 5 \times 41$
$\Delta 27 \times 18$
$\triangle 11 \quad x 14$
$\triangle 22 \times 11$
$\Delta 3 \times 6$

WT
$\Delta 15 \times 5$
$\Delta 15 \times 3$
$\Delta 7 \quad \mathrm{x} 2$
$\triangle 38 \times 2$
$\triangle 49 \times 2$

WT
$\Delta 3 \times 28$
$\triangle 15 \times 7$
$\Delta 4 \times 6$
$\Delta 9 \times 6$
$+3 \times 4$

WT
$\Delta 11 \times 8$
$+3 \times 7$
$\triangle 6 \times 3$
$\Delta 9 \times 31$
$\Delta 5 \times 2$

WT
$\Delta 5 \mathrm{x} 2$
$\Delta 34 \times 2$
$\Delta 3 \times 1$
$\Delta 4 \quad \times 1$
$\Delta 8 \quad(\Delta 9+1) \times 1$

WT
$\triangle 30 \times 3$
$\triangle 4 \quad(\triangle 5+1) \quad x 2$
$+3 \times 2$
$\triangle 11 \times 2$
$\Delta 8 \times 1$

WT
$\Delta 13 \times 4$
$\Delta 6 \quad x 3$
$\Delta 5 \times 2$
$\Delta 7 \times 2$
$\Delta 96 \times 1$

WT
$\Delta 7 \times 26$
$\triangle 9 \times 18$
$\Delta 24 \times 14$
$\Delta 6 \quad \times 4$

LMNA Mutations in 183 of 1459 sequences $\approx 12.5 \%$
CGCTGCCAACCTGCCGGCCATGGAGACCCCGTCCCAGCGGCGCGCCACCCGCAGCGGGGCGCAGGCCAGCTCCACTCCGCTGTCGCCC

 CGCTGCCAACCTGCCGGCCATGGAGACCCCGTCCCAGCGGCGcgcCGCCACCCGCAGCGGGGCGCAGGCCAGCTCCACTCCGCTGTCG CGCTGCCAACCTGCCGGCCATGGAGACCCCGTCC--------------------- AGCGGGGCGCAGGCCAGCTCCACTCCGCTGTCGCCC CGCTGCCAACCTGCCGGCCATGGAGACCCCGTCCCAGCGGCGcgccCGCCACCCGCAGCGGGGCGCAGGCCAGCTCCACTCCGCTGTC

MLYCD Mutations in 611 of 2282 sequences $\approx 26.8 \%$
AGCGGCGGCGGCGCTCCCCCTCGGCAGCTGTTGTGGGGCACCATGCGAGGCTTCGGGCCAGGCTTGACGGCCAGGCGTCTCCTCCCGC AGCGGCGGCGGCGCTCCCCCTCGGCAGCTGTTGTGG------------- GGCTTCGGGCCAGGCTTGACGGCCAGGCGTCTCCTCCCGC AGCGGCGGCGGCGCTCCCCCTCGGCAGCTGTTGT-------------GAGGCTTCGGGCCAGGCTTGACGGCCAGGCGTCTCCTCCCGC
 AGCGGCGGCGGCGCTCCCCCTCGGCAGCTGT-------------TGCGAGGCTTCGGGCCAGGCTTGACGGCCAGGCGTCTCCTCCCGC

MYBPC3 Mutations in 13 of 1895 sequences $\approx 0.7 \%$
TGGGTGACCTGTGCCTGCTTCGTGCCTGGTGTGACGTCTCTCAGGATGCCTGAGCCGGGGAAGAAGCCAGGTAGCTTTAGGACTGGGG TGGGTGACCTGTGCCTGCTTCGTGCCTGGTG-----------------TGCCTGAGCCGGGGAAGAAGCCAGGTAGCTTTAGGACTGGGG TGGGTGACCTGTGCCTGCTTCGTGCCTGGTGT---------------GATGCCTGAGCCGGGGAAGAAGCCAGGTAGCTTTAGGACTGGGG TGGGTGACCTGTGCCTGCTTCGTGCCTGGTGTGACGTCTCTCaggAGGATGCCTGAGCCGGGGAAGAAGCCAGGTAGCTTTAGGACTG TGGGTGACCTGTGCCTGCTTCGTGCCTGGTGTGACGTC--------TGCCTGAGCCGGGGAAGAAGCCAGGTAGCTTTAGGACTGGGG TGGGTGACCTGTGCCTGCTTCGTGCCTGGTGTGACGT---TCAGGAT-CCTGAGCCGGGGAAGAAGCCAGGTAGCTTTAGGACTGGGG

MYH6 Mutations in 172 of 1845 sequences $\approx 9.3 \%$
GGAGTAACATAGCCCTCCTGTCTCTGACCCAGGGGAAGCACCAAGATGACCGATGCCCAGATGGCTGACTTTGGGGCAGCGGCCCAGT GGAGTAACATAGCCCTCCTGTCTCTGACCCAGGGGAAGC----------ACCGATGCCCAGATGGCTGACTTTGGGGCAGCGGCCCAGT
 GGAGTAACATAGCCCTCCTGTCTCTGACCCA-GGGAAGC----------ACCGATGCCCAGATGGCTGACTTTGGGGCAGCGGCCCAGT
 GCCA--------------------- / -------------------------ACCGATGCCCAGATGGCTGACTTTGGGGCAGCGGCCCAGT

MYH7 Mutations in 176 of 2894 sequences $\approx 6.1 \%$
CCAGGCACAGCCATGGGAGATTCGGAGATGGCAGTCTTTGGGGCTGCCGCCCCCTACCTGCGCAAGTCAGAGAAGGAGCGGCTAGAAG CCAGGCACAGCCATGGGAGATTCGGAGATGGCAGTCTTTGGGGCTGC---------------CGCAAGTCAGAGAAGGAGCGGCTAGAAG CCAGGCACAGCCATGGGAGATTCGGAGATGGCAGTCTTT-GGGCTGC------------------ GCAAGTCAGAGAAGGAGCGGCTAGAAG CCAGGCACAGCCATGGGAGATTCGGAGATGGCAGTCTTTGGGGCTG-----------CCTGCGCAAGTCAGAGAAGGAGCGGCTAGAAG CCAGGCACAGCCATGGGAGATTCGGAGATGGCAGTCTT----------------CCCTACCTGCGCAAGTCAGAGAAGGAGCGGCTAGAAG CCAGGCACAGCCATGGGAGATTCGGAGATGGCAGTCTTTGGGGCTG-----CgCTA-CTGCGCAAGTCAGAGAAGGAGCGGCTAGAAG

MYH7 Mutations in 1143 of 2276 sequences $\approx 50.2 \%$
CAGCCATGGGAGATTCGGAGATGGCAGTCTTTGGGGCTGCCGCCCCCTACCTGCGCAAGTCAGAGAAGGAGCGGCTAGAAGCGCAGAC CAGCCATGGGAGATTCGGAGATGGCAGTCTTTGGGGCTGC---------------CGCAAGTCAGAGAAGGAGCGGCTAGAAGCGCAGAC CAGCCATGGGAGATTCGGAGATGGCAGTCTTT-GGGCTGC----------------CGCAAGTCAGAGAAGGAGCGGCTAGAAGCGCAGAC CAGCCATGGGAGATTCGGAGATGGCAGTCTT---------------CCCTACCTGCGCAAGTCAGAGAAGGAGCGGCTAGAAGCGCAGAC CAGCCATGGGAGATTCGGAGATGGCAGTCTTTGGGGCTG----------CCTGCGCAAGTCAGAGAAGGAGCGGCTAGAAGCGCAGAC CAGCCATGGGAGATTCGGAGATGGCAGTCTTTGGGG------------------TGGCGCAAGTCAGAGAAGGAGCGGCTAGAAGCGCAGAC

MYL2 Mutations in 20 of 3949 sequences $\approx 0.5 \%$

AATTCTTCTCGGGAGGCAGTGCTGGGTCCTTTCCACCATGGTGAGTACAAGGGCTCCAGGAGGTGATGATGCCGGGTGGGCGAGGAGA AATTCTTCTCGGGAGGCAGTGCTGGGTCCTTTCCACCA---TGtGTACAAGGGCTCCAGGAGGTGATGATGCCGGGTGGGCGAGGAGA AATTCTTCTCGGGAGGCAGTGCTGGGTCCTTTCCACCATGGTGAGT---AaGGCTCCAGGAGGTGATGATGCCGGGTGGGCGAGGAGA AATTCTTCTCGGGAGGCAGTGCTGGGTCCTTTCCACCATGGTGAGTgaaagacACAAGGGCTCCAGGAGGTGATGATGCCGGGTGGGC AATTCTTCTCGGGAGGCAGTGCTGGGTCCTTTCCACCATGGTGAGTggaaaggaccACAAGGGCTCCAGGAGGTGATGATGCCGGGTG AATTCTTCTCGGGAGGCAGTGCTGGGTCCTTTCCACCATGGTGagtAGTACAAGGGCTCCAGGAGGTGATGATGCCGGGTGGGCGAGG

MYL3 Mutations in 171 of 2199 sequences $\approx 7.8 \%$

TTCTCTCCACATCCСTCTCTGTACTTACAGCCCCCAATGGCCCCCAAAAAGCCAGAGCCCAAGAAGGATGATGCCAAGGCAGCCCCCA TTСТСТССАСАТСССТСТСТGTACTTACAGCCCCCAATG----------- GCCAGAGCCCAAGAAGGATGATGCCAAGGCAGCCCCCA TTСТСТССАСАТСССТСТСТGTACTTACAG-CCCCAATG------------ GCCAGAGCCCAAGAAGGATGATGCCAAGGCAGCCCCCA TTСТСТССАСАТСССТСТСТGTACTTACAGCCCCCAATG------------ GCCAGAGCCCAAGAAGGATGATGCCAAGGCAG-CCCCA TTСТСТССАСАТСССТСТСТGTAСTTAСA---------- GCCCCCAAAAAGCCAGAGCCCAAGAAGGATGATGCCAAGGCAGCCCCCA TTCTCTCCACATCCСTCTCTGTACTTACAGCCCCCAATGGCCC---AAAAGCCAGAGCCCAAGAAGGATGATGCCAAGGCAGCCCCCA

MYLK2 Mutations in 254 of 4248 sequences $\approx 6 \%$

ACAAGCAGCAGCACACGCCTCCCTACCTCATGGCGACAGAAAATGGAGCAGTTGAGCTGGGAATTCAGAACCCATCAACAGGTGCCAA ACAAGCAGCAGCACACGCCTCCCTACCTCATGGCGAC--------AGCAGTTGAGCTGGGAATTCAGAACCCATCAACAGGTGCCAA ACAAGCAGCAGCACACGCCTCCCTACCTCATGGCGA--------------CAGTTGAGCTGGGAATTCAGAACCCATCAACAGGTGCCAA ACAAGCAGCAGCACACGCCTCCCTACCTCATGGCGACA-------GAGCAGTTGAGCTGGGAATTCAGAACCCATCAACAGGTGCCAA ACAAGCAGCAGCACACGCCTCCCTACCTCATGGCGACAGAAAAtggTGGAGCAGTTGAGCTGGGAATTCAGAACCCATCAACAGGTGC ACAAGCAGCAGCACACGCCTCCCTACCTCATGGCGACAGAA--------AGTTGAGCTGGGAATTCAGAACCCATCAACAGGTGCCAA ACAAGCAGCAGCACACGCCTCCCTACCTCATGGCGACA------------------- GAGCTGGGAATTCAGAACCCATCAACAGGTGCCAA

MYOM1

WT
$\triangle 32 \times 18$
419×10
$+3 \times 7$
$\Delta 17 \times 6$
$+4 \times 5$

WT
$\Delta 12 \times 50$
412×31
419×19
$\Delta 12 \times 14$
$\Delta 20 \times 13$

WT
$\Delta 15 \times 3$
$\Delta 12 \times 2$
$+3 \mathrm{x} 1$
$\Delta 8 \mathrm{x} 1$
$\Delta 4 \quad \mathrm{x} 1$

WT
$\Delta 9 \times 20$
$\Delta 262 \times 9$
$\Delta 10 \times 5$
$\Delta 22 \times 5$
$\Delta 255 \times 4$

WT
$\Delta 13 \times 49$
$\triangle 14 \times 10$
$\Delta 10 \times 5$
$\Delta 13 \times 4$
$\Delta 6 \quad(\Delta 7+1) \times 3$

WT
$\triangle 13 \quad x 488$
$\triangle 14 \times 137$
$\Delta 13 \times 115$
$\triangle 10 \times 15$
$\Delta 14 \times 10$

WT
$\Delta 3(\Delta 4+1) \quad x 2$
$\Delta 3 \quad(\Delta 4+1) \quad x 1$
$+7 \times 1$
$+10 \mathrm{x1}$
$+3 \times 1$

WT
$\triangle 11 \times 18$
$\Delta 12 \times 5$
$\Delta 12 \times 4$
$\triangle 10 \times 4$
$\Delta 3 \times 2$

WT
$\Delta 9 \times 22$
$\triangle 12 \times 12$
$\Delta 7 \times 10$
$+3 \times 5$
$\Delta 8 \times 5$
$\Delta 15 \times 5$

TTCCTTCAGGTGGCCCGGTTCCTTCAAGaGGCACAGGATGTCTttgTTGCCTTTTTATCAGAGGTGCCACCAGCACTATGATCTCAGC TTCCTTCAGGTGGCCCGGTTCCTTCAAGGGGCACAGGATGTCTTTGC---TTTA------GTG----CACCACTATGATCTCAGCTAC TTCCTTCAGGTGGCCCGGTTCCTTCAAGGGGCACAGGATGTCTTTGC-----TATCAGAGGTGCCACCAGCACTATGATCTCAGCTAC TTCCTTCAGGTGGCCCGGTTCCTTCAAGGGGCACAGGATGTCTttgTTGCCTTTTTATCAGAGGTGCCACCAGCACTATGATCTCAGC
$+3(\Delta 1+4) \quad x 2$ $\Delta 13 \quad(\Delta 14+1) \quad x 1$ $\Delta 5 \mathrm{x} 1$
$+3 \mathrm{x} 1$

MYOZ2 Mutations in 67 of 4653 sequences $\approx 1.4 \%$
AAAAAAACCATGCTATCACATAATACTATGATGAAGCAGAGAAAACAGCAAGCAACAGCCATCATGAAGGAAGTCCATGGAAATGGTA AAAAAAACCATGCTATCACATAATACTATGATGAAGCAG------------AGCAACAGCCATCATGAAGGAAGTCCATGGAAATGGTA AAAAAAACCATGCTATCACATAATACTATGATGAAGCAG-------AGCAAGCAACAGCCATCATGAAGGAAGTCCATGGAAATGGTA AAAAAAACCATGCTATCACATAATACTATGATG-------------------AAGCAACAGCCATCATGAAGGAAGTCCATGGAAATGGTA AAAAAAACCATGCTATCACATAATACTATGATGAAGCAGAGA----AGCAAGCAACAGCCATCATGAAGGAAGTCCATGGAAATGGTA AAAAAAACCATGCTATCACATAATACTATGATGAAGCAGAGA-------cAGCAACAGCCATCATGAAGGAAGTCCATGGAAATGGTA

MYPN Mutations in 345 of 1389 sequences $\approx 24.8 \%$

AAACTTTTTGTTATTATTATTTTGTGACAGCATGCAAGACGACAGCATAGAAGCTTCTACTTCCATATCTCAGCTTCTAAGAGAGAGC
 AAACTTTTTGTTATTATTATTTTGTGACAGCAT-----------GCATAGAAGCTTCTACTTCCATATCTCAGCTTCTAAGAGAGAGC AAACTTTTTGTTATTATTATTTTGTGACAGCATGCAA---GACAGCATAGAAGCTTCTACTTCCATATCTCAGCTTCTAAGAGAGAGC AAACTTTTTGTTATTATTATTTTGTGACAGCATGCA----GACAGCATAGAAGCTTCTACTTCCATATCTCAGCTTCTAAGAGAGAGC AAACTTTTTGTTATTATTATTTTGTGACAGCATGCAAGACGAC--------AGCTTCTACTTCCATATCTCAGCTTCTAAGAGAGAGC

NEBL Mutations in 44 of 3474 sequences $\approx 1.3 \%$
AATATTTTAAAGGGTAAAAATGAGGGTCCCTGTATTTGAGGATATAAAAGATGAAACTGAAGAAGAAAAGATAGGGGAAGAAGAAAAT AATATTTTAAAGGGTAAAAATGAGGGTCCCTGTATTTGAGGAtatTATAAAAGATGAAACTGAAGAAGAAAAGATAGGGGAAGAAGAA AATATTTTAAAGGGTAAAAATGAGGGTCCCTGTATTTGAGG-----AAAGATGAAACTGAAGAAGAAAAGATAGGGGAAGAAGAAAAT AATATTTTAAAGGGTAAAAATGAGGGTCCCTGT---------TATAAAAGATGAAACTGAAGAAGAAAAGATAGGGGAAGAAGAAAAT AATATTTTAAAGGGTAAAAATGAGGGTCCCTGT----------------------------1CTGAAGAAGAAAAGATAGGGGAAGAAGAAAAT AATATTTTAAAGGGTAAAAATGAGGGTCCC-------------------------TGAAACTGAAGAAGAAAAGATAGGGGAAGAAGAAAAT

NEXN Mutations in 179 of 1508 sequences $\approx 11.9 \%$
ATAATCAGCCCAAGACCACATAGAGCAAACATGAATGATATTTCCCAAAAGGCTGAGGTAAGTCTCAAAAGTAAAAATAAAAATAAAA ATAATCAGCCCAAGACCACATAGAGCAAA----------------- CAAAAGGCTGAGGTAAGTCTCAAAAGTAAAAATAAAAATAAAA ATAATCAGCCCAAGACCACATAGAGCAAACATGAA---------------------- TGAGGTAAGTCTCAAAAGTAAAAATAAAAATAAAA ATAATCAGCCCAAGACCACATAGAGCAAACA---------------------------- TGAGGTAAGTCTCAAAAGTAAAAATAAAAATAAAA ATAATCAGCCCAAGACCACATAGAGCAAACATGAATGATATTTCC-----GGCTGAGGTAAGTCTCAAAAGTAAAAATAAAAATAAAA ATAATCAGCCCAAGACCACATAGAGCAAACATGAATGATATT---CAAAAGGCTGAGGTAAGTCTCAAAAGTAAAAATAAAAATAAAA

NKX2-5
Mutations in 132 of 1404 sequences $\approx 9.4 \%$
CTGCCGCCCACCTGGCGCTGTGAGACTGGCGCTGCCACCATGTTCCCCAGCCCTGCTCTCACGCCCACGCCCTTCTCAGTCAAAGACA CTGCCGCCCACCTGGCGCTGTGAGACTGGCGCTG-------------CCAGCCCTGCTCTCACGCCCACGCCCTTCTCAGTCAAAGACA CTGCCGCCCACCTGGCGCTGTGAGACTGGCGCTGCCA---------CCAGCCCTGCTCTCACGCCCACGCCCTTCTCAGTCAAAGACA CTGCCGCCCACCTGGCGCTGTGAGACTGGCGCTGCCACCATGTT------------CTCTCACGCCCACGCCCTTCTCAGTCAAAGACA CTGCCGCCCACCTGGCGCTGTGAGACTGGCGCTGCCACCATG----CCAGCCCTGCTCTCACGCCCACGCCCTTCTCAGTCAAAGACA CTGCCGCCCACCTGGCGCTGTGAGACTGGCGCTGCCACCATG---CCCAGCCCTGCTCTCACGCCCACGCCCTTCTCAGTCAAAGACA

PDLIM3 Mutations in 29 of 2445 sequences $\approx 1.2 \%$
GGCTGCCCTGCGCGGGGACACTCAGAGCCCGGTGGGCGGGAGGAAGGCGGCATGCCCCAGACGGTGATCCTCCCGGGCCCTGCGCCCT

 GGCTGCCCTGCGCGGGGACACTCAGAGCCCGGTGGGC------AAGGCGGCATGCCCCAGACGGTGATCCTCCCGGGCCCTGCGCCCT

PKP2
Mutations in 132 of 2979 sequences $\approx 4.4 \%$
CCAGAGGCAGGCGAGCAGCTCGGTCGCCCCCACCGGCCCCATGGCAGCCCCCGGCGCCCCAGCTGAGTACGGCTACATCCGGACCGTC CCAGAGGCAGGCGAGCAGCTCGGTCGCCCCCACCG-----------GCCCCCGGCGCCCCAGCTGAGTACGGCTACATCCGGACCGTC CCAGAGGCAGGCGAGCAGCTCGGTCGCCCCCA-----------------------CCGGCGCCCCAGCTGAGTACGGCTACATCCGGACCGTC
 CCAGAGGCAGGCGAGCAGCTCGGTCGCCCCCACCGG------------- CCCCGGCGCCCCAGCTGAGTACGGCTACATCCGGACCGTC CCAGAGGCAGGCGAGCAGCTCGGTCGCC------------------------CCCCCGGCGCCCCAGCTGAGTACGGCTACATCCGGACCGTC

PLN Mutations in 8 of 1097 sequences $\approx 0.7 \%$

GACCACTTAAAACTTCAGACTTCCTGTCCTGCTGGTATCATGGAGAAAGTCCAATACCTCACTCGCTCAGCTATAAGAAGAGCCTCAA GACCACTTAAAACTTCAGACTTCCTGTCCTGCTGGTATCATGGctggtatcatAG-gAGTCCAATACCTCACTCGCTCAGCTATAAGA GACCACTTAAAACTTCAGACTTCCTGTCCTGCTGGTATCATG----AAaTCC-ATACCTCACTCGCTCAGCTATAAGAAGAGCCTCAA GACCACTTAAAACTTCAGACTTCCTGTCCTGCTGGTATCATG-----AGTCCAATACCTCACTCGCTCAGCTATAAGAAGAGCCTCAA GACCACTTAAAACTTCAGACTTCCTGTCCTGCTGGTATCAT---GAAAGTCCAATACCTCACTCGCTCAGCTATAAGAAGAGCCTCAA GACCACTTAAAACTTCAGACTTCCTGTCCTGCT-GTA-CATG-----------------CaTCACTCGCTCAGCTATAAGAAGAGCCTCAA

PRKAG2 Mutations in 117 of 2433 sequences $\approx 4.8 \%$
CCCGAGGAGTTTCGCAGAATCAACTTCTGGTTAGAGTTATGGGAAGCGCGGTTATGGACACCAAGAAGAAAAAAGATGTTTCCAGCCC CCCGAGGAGTTTCGCAGAATCAACTTCTGGTTAGA-------------------
 CCCGAGGAGTTTCGCAGAATCAACTTCTGGTTAGA------------------- GTTATGGACACCAAGAAG-AAAAAGATGTTTCCAGCCC CCCGAGGAGTTTCGCAGAATCAACTTCTGGTTAGA-------------------GTTATGGACACCAAGAAGAAAAAAGATGTTTCCAG-CC CCCGAGGAGTTTCGCAGAATCAACTTCTGGTTAGAGTTATGGgaaGAAGCGCGGTTATGGACACCAAGAAG-AAAAAGATGTTTCCAG

WT
$\Delta 11 \times 10$
$\Delta 7 \quad \mathrm{x} 4$
$\Delta 16 \times 4$
$\Delta 4 \quad \mathrm{x} 2$
$\Delta 7(\Delta 8+1) \quad x 2$

WT
$\triangle 210 \times 12$
$\Delta 11 \mathrm{x} 11$
$\Delta 3 \times 9$
$\Delta 4 \times 5$
$\Delta 8 \times 4$

WT
$+3 \mathrm{x} 2$
$\Delta 5 \mathrm{x} 2$
$\Delta 9 \mathrm{x} 2$
$\triangle 22 \times 2$
$\Delta 21 \times 2$

WT
$\triangle 16 \times 9$
418×8
$\Delta 22 \times 4$
$\triangle 5 \times 3$
$\Delta 3 \times 3$

WT
$\Delta 12 \times 12$
$\Delta 9 \times 7$
$\Delta 11 \times 3$
$\Delta 4 \quad \mathrm{x} 3$
$\Delta 3 \times 2$

WT
$\triangle 93 \times 3$
$\triangle 56$ x3
$\Delta 6 \times 2$
$\triangle 48 \times 2$
$\triangle 76 \mathrm{x} 1$

WT
$\triangle 11 \times 12$
$\Delta 18 \times 10$
$\Delta 20 \times 8$
$\Delta 12 \times 7$
$\Delta 19 \times 5$

WT

$+9(\Delta 2+11) \quad x 1$
$\Delta 5 \quad(\Delta 6+1) \quad x 1$
$\triangle 5 \times 1$
$\Delta 3 \times 1$
$\Delta 16(\Delta 17+1) \times 1$

WT
$\triangle 15 \times 22$
$\Delta 178 \times 20$
$\Delta 16 \times 4$
$\Delta 16 \times 3$
$+2(\Delta 1+3) \quad x 2$

TGTTTTCTGTGAAACAGTATTTCTATACAGTTGCTCCAATGACAGAGTTACCTGCACCGTTGTCCTACTTCCAGAATGCACAGATGTC TGTTTTCTGTGAAACAGTATTTCTATACAGTTGCTCCAATgacaGACAGAGTTACCTGCACCGTTGTCCTACTTCCAGAATGCACAGA TGTTTTCTGTGAAACAGTATTTCTATACAGTTGCTCCAATG--------ACCTGCACCGTTGTCCTACTTCCAGAATGCACAGATGTC TGTTTTCTGTGAAACAGTATTTCTATACAGTTGCTCCAATG-----------------ACCGTTGTCCTACTTCCAGAATGCACAGATGTC TGTTTTCTGTGAAACAGTATTTCTATACAGTTGCTCCAAT------GTTACCTGCACCGTTGTCCTACTTCCAGAATGCACAGATGTC

PSEN2
Mutations in 344 of 2888 sequences $\approx 11.9 \%$
AAGGTCCTTGTGCTCCTTTTTCCAGGTGCTTCCAGAGGCAGGGCTATGCTCACATTCATGGCCTCTGACAGCGAGGAAGAAGTGTGTG AAGGTCCTTGTGCTCCTTTTTCCAGGTGCTTCCAGAGGCAGG----TGCTCACATTCATGGCCTCTGACAGCGAGGAAGAAGTGTGTG AAGGTCCTTGTGCTCCTTTTTCCAGGTGCTTCCAGAG-----------GCTCACATTCATGGCCTCTGACAGCGAGGAAGAAGTGTGTG AAGGTCCTTGTGCTCCTTTTTCCAGGTGCTTCCAGAGGCA-------GCTCACATTCATGGCCTCTGACAGCGAGGAAGAAGTGTGTG AAGGTCCTTGTGCTCCTTTTTCCAGGTGCTTCCAGAGGCAG------GCTCACATTCATGGCCTCTGACAGCGAGGAAGAAGTGTGTG

PTPN11 Mutations in 58 of 1498 sequences $\approx 3.9 \%$

CCTGAGCAAGGAGCGGGTCCGTCGCGGAGCCGGAGGGCGGGAGGAACATGACATCGCGGAGGTGAGGAGCCCCGAGGGGCCCGGCGCG CCTGAGCAAGGAGCGGGTCCGTCGCGGAGCCGGAGGGCGGGAGgaacGAACATGACATCGCGGAGGTGAGGAGCCCCGAGGGGCCCGG CCTGAGCAAGGAGCGGGTCCGTCGCGGAGCCGGAGGGCGGGA-------GACATCGCGGAGGTGAGGAGCCCCGAGGGGCCCGGCGCG CCTGAGCAAGGAGCGGGTCCGTCGCGGAGCCGGAGGGCG---GGAACATGACATCGCGGAGGTGAGGAGCCCCGAGGGGCCCGGCGCG CCTGAGCAAGGAGCGGGTCCGTCGCGGAGC---------GGAGGAACATGACATCGCGGAGGTGAGGAGCCCCGAGGGGCCCGGCGCG CCTGAGCAAGGAGCGGGTCCGTCGCGGAGCCGGAGGGCGGGAGGA-------------------TGAGGAGCCCCGAGGGGCCCGGCGCG

RAF1 Mutations in 70 of 1725 sequences $\approx 4.1 \%$
TTACCAGGTTTAAGAATTGTTTAAGCTGCATCAATGGAGCACATACAGGGAGCTTGGAAGACGATCAGCAATGGTTTTGGATTCAAAG TTACCAGGTTTAAGAATTGTTTAAGCTGCATCAAT---------------GGAGCTTGGAAGACGATCAGCAATGGTTTTGGATTCAAAG TTACCAGGTTTAAGAATTGTTTAAGCTGCATCAAT-------------GGGAGCTTGGAAGACGATCAGCAATGGTTTTGGATTCAAAG TTACCAGGTTTAAGAATTGTTTAAGCTGCATCA--------------AGGGAGCTTGGAAGACGATCAGCAATGGTTTTGGATTCAAAG TTACCAGGTTTAAGAATTGTTTAAGCTGCAT---------------CAGGGAGCTTGGAAGACGATCAGCAATGGTTTTGGATTCAAAG TTACCAGGTTTAAGAATTGTTTAAGCTGCATCAATGGAGCACAT-----------------AGACGATCAGCAATGGtTTTTGGATTCAAA

RBM20 Mutations in 152 of 4228 sequences $\approx 3.6 \%$
CCTTGAGCTCTCTCGCCGCGATCCCGGGCGGGTCTCGCCCCGCATGGTGCTGGCAGCAGCCATGAGCCAGGACGCGGACCCCAGCGGT CCTTGAGCTCTCTCGCCGCGATCCCGGGCGGGTCTC--------------GCTGGCAGCAGCCATGAGCCAGGACGCGGACCCCAGCGGT CCTTGAGCTCTCTCGCCGCGATCCCGG--------------------------GCTGGCAGCAGCCATGAGCCAGGACGCGGACCCCAGCGGT CCTTGAGCTCTCTCGCCGCGATCCCGGGCGGGTCTCGCCCCGCA------TGGCAGCAGCCATGAGCCAGGACGCGGACCCCAGCGGT ССTTGAGCTCTCTCGCCGCGATCCCGGGCGGGTCTC--------------------GCAGCAGCCATGAGCCAGGACGCGGACCCCAGCGGT

RYR2

Mutations in 11 of 1322 sequences $\approx 0.8 \%$

GGCGAGGAGGCGCGGAACCATGGCCGATGGGGGCGAGGGCGAAGACGAGATCCAGTTCCTGCGAACTGTAAGCGCCGTGCGTCGCGTG GGCGAGGAGGCGCGGAACCATGGCCGATGGGGGCGAGGGCGAAgacGACGAGATCCAGTTCCTGCGAACTGTAAGCGCCGTGCGTCGC GGCGAGGAGGCGCGGAACCATGGCCGATGGGGGCGAGGGCGAAGACGA----CAGT----- gGAACTGTAAGCGCCGTGCGTCGCGTG GGCGAGGAGGCGCGGAACCATGGCCGATGGGGGCGAGGGCGAActgtaagcgatgGcCGAtgggggcGATCCAGTTCCTGCGAACTGT GGCGAGGAGGCGCGGAACCATGGCCGATGGGGGCGAGGGCGA----GcGATCCAGTTCCTGCGAACTGTAAGCGCCGTGCGTCGCGTG GGCGAGGAGGCGCGGAACCATGGCCGATGGGGGCGAGGGCGA-----AGATCCAGTTCCTGCGAACTGTAAGCGCCGTGCGTCGCGTG

SCN5A Mutations in 87 of 4481 sequences $\approx 1.9 \%$

CCTGTGCCCAGAAGCAGGATGAGAAGATGGCAAACTTCCTATTACCTCGGGGCACCAGCAGCTTCCGCAGGTTCACACGGGAGTCCCT CCTGTGCCCAGAAGCAGGATGAGAAGATGGCAAACTT-------CCTCGGGGCACCAGCAGCTTCCGCAGGTTCACACGGGAGTCCCT CCTGTGCCCAGAAGCAGGATGAGAAGATGGCAAACT----------TCGGGGCACCAGCAGCTTCCGCAGGTTCACACGGGAGTCCCT CCTGTGCCCAGAAGCAGGATGAGAAGATGGCA-----CC----AgCTCGGGGCACCAGCAGCTTCCGCAGGTTCACACGGGAGTCCCT CCTGTGCCCAGAAGCAGGATGAGAAGATGGCAAACTTCCTATtacTACCTCGGGGCACCAGCAGCTTCCGCAGGTTCACACGGGAGTC CCTGTGCCCAGAAGCAGGATGAGAAGATGGCAAACTTC-------------------CCAGCAGCTTCCGCAGGTTCACACGGGAGTCCCT

SCO2
Mutations in 84 of 3459 sequences $\approx 2.4 \%$
GGCTCCTGACGCCTGTGCTTGTTTCCAGGAGCATCAGATCCATGCTGCTGCTGACTCGGAGCCCCACAGCTTGGCACAGGCTCTCTCA GGCTCCTGACGCCTGTGCTTGTTTCCAGGAGCATCAGATCCA---TGCTGCTGACTCGGAGCCCCACAGCTTGGCACAGGCTCTCTCA GGCTCCTGACGCCTGTGCTTGTTTCCAGG---ATCA-----------------------TCGGAGCCCCACAGCTTGGCACAGGCTCTCTCA GGCTCCTGACGCCTGTGCTTGTTTCCAGGAGCATCAGATCCtggtgctgactcggagATcaGaTGCTGCTGACTCGGAGCCCCACAGC GGCTCCTGACGCCTGTGCTTGTTTCCAGGAGCATC-------TGCTGCTGCTGACTCGGAGCCCCACAGCTTGGCACAGGCTCTCTCA

SDHA
Mutations in 66 of 1815 sequences $\approx 3.6 \%$
AACAGCAGACATGTCGGGGGTCCGGGGCCTGTCGCGGCTGCTGAGCGCTCGGCGCCTGGCGCTGGCCAAGGCGGTGAGTCCGTGCCGC AACAGCAGACATGTCGGGGGTCCGGGGCCTGTCGCGGCTGCTGAGCG--------CTGGCGCTGGCCAAGGCGGTGAGTCCGTGCCGC AACAGCAGACATGTCGGGGGTCCGGGGCCTGTCGCGGCT-------GCTCGGCGCCTGGCGCTGGCCAAGGCGGTGAGTCCGTGCCGC AACAGCAGACATGTCGGGGGTCCGGGGCCTGTCGCGGCTGCTGAGCGCT---CGCCTGGCGCTGGCCAAGGCGGTGAGTCCGTGCCGC AACAGCAGACATGTCGGGGGTCCGGGGCCTGTCGCGGCTGCTGAGCGCT----------GCGCTGGCCAAGGCGGTGAGTCCGTGCCGC AACAGCAGACATGTCGGGGGTCCGGGGCCTGTCGCGGCTGCTGAGC-CT---CGCCTGGCGCTGGCCAAGGCGGTGAGTCCGTGCCGC

SGCD Mutations in 7 of 2203 sequences $\approx 0.3 \%$

AGACATTACTGCCGGGAGTGTTGAGTGAAGGGACCAGGTGGAGATGGTGAGTAATTCCCGGGAGCGAAGCTTGTTCAAGGCCCTGCTC AgACATTACTGCCGGGAGTGTTGAGTGAAGGGACCAGGTGGAgatGATGGTGAGTAATTCCCGGGAGCGAAGCTTGTTCAAGGCCCTG AGACATTACTGCCGGGAGTGTTGAGTGAAGGGACCAGGT---GAT-GTGAGTAATTCCCGGGAGCGAAGCTTGTTCAAGGCCCTGCTC AGACATTACTGCCGGGAGTGTTGAGTGAAGGGACCAG-----GATGGTGAGTAATTCCCGGGAGCGAAGCTTGTTCAAGGCCCTGCTC AGACATTACTGCCGGGAGTGTTGAGTGAAGGGACCA----------GGTGAGTAATTCCCGGGAGCGAAGCTTGTTCAAGGCCCTGCTC AGACATTACTGCCGGGAGTGTTGAGTGAAGGGACCA---------GGTGAGTAATT-CCGGGAGCGAAGCTTGTTCAAGGCCCTGCTC

WT
$+4 \times 5$
$\Delta 8 \times 4$
$\Delta 14 \times 4$
$\Delta 6 \quad \times 4$

WT
$\Delta 4 \quad x 12$
$\triangle 10 \quad \mathrm{x} 11$
$\Delta 7 \times 9$
$\Delta 6$ x8
$\triangle 172 \times 7$

WT
$+4 \times 2$
$\Delta 7 \quad x 2$
$\Delta 3 \times 2$
$\Delta 9 \times 2$
$\Delta 17 \times 1$

WT
$\Delta 13 \times 6$
$\Delta 12 \times 2$
$\Delta 13 \times 2$
$\triangle 14 \times 2$
$\Delta 13(\Delta 14+1) \quad x 1$

WT
$\Delta 12 \times 5$
$\Delta 21 \times 5$
$\Delta 6 \quad x 4$
$\Delta 16 \times 4$
$\Delta 25 \times 4$

WT
$+3 \times 3$
$\Delta 9 \quad(\Delta 10+1) \quad x 1$
$+19(\Delta 1+20) \times 1$
$\Delta 4(\Delta 5+1) \times 1$
$\Delta 5 \times 1$

WT
$\Delta 7 \times 5$
$\triangle 10 \times 3$
$\Delta 9(\Delta 10+1) \times 3$
$+3 \mathrm{x} 2$
$\Delta 16$ x2

WT
$\triangle 3 \times 15$
$\Delta 22 \times 3$
$+18(\Delta 1+19) \times 2$
$\Delta 7 \times 2$
$\Delta 24 x 2$

WT
$\Delta 8 \quad \times 2$
$\Delta 7 \quad \mathrm{x} 2$
$\Delta 3 \quad x 1$
$\Delta 9 \times 1$
$\Delta 4 \quad \times 1$

WT
$+3 \mathrm{x} 2$
$\triangle 4 \times 1$
$\Delta 5 \mathrm{x} 1$
$\Delta 9 \quad x 1$
$\Delta 10 \mathrm{x} 1$

SLC25A20 Mutations in 12 of 542 sequences $\approx 2.2 \%$
AAGCCAGGACGGCCCGAGAACTGACAGACGGAGTGACAGACGGACTGACCATGGCCGACCAGCCAAAACCCATCAGCCCGCTCAAGAA AAGCCAGGACGGCCCGAGAACTGACAGACGGAGTGACA--------GACCATGGCCGACCAGCCAAAACCCATCAGCCCGCTCAAGAA AAGCCAGGACGGCCCGAGAACTGACAGACGGAGTGACAGACG----GACCATGGCCGACCAGCCAAAA-CCATCAGCCCGCTCAAGAA AAGCCAGGACGGCCCGAGAACTGACAGACGGAGTGACAGACG---------------GACCAGCCAAAACCCATCAGCCCGCTCAAGAA AAGCCAGGACGGCCCGAGAACTGACAGACGGAGTGACAGAC-GACTG-------------CCACaCAAAACCCATCAGCCCGCTCAAGAA AAGCCAGGACGGCCCGAGAACTGACAGACGGAGTGACAGtCGG-----CCATGGCCGACCAGCCAAAACCCATCAGCCCGCTCAAGAA

SLC25A4 Mutations in 85 of 1114 sequences $\approx 7.6 \%$
CGAACGGGCTGCCTGCGGGCTGAGAGCGTCGAGCTGTCACCATGGGTGATCACGCTTGGAGCTTCCTAAAGGACTTCCTGGCCGGGGG CGAACGGGCTGCCTGCGGGCTGAGAGCGTCGAGC------------TGATCACGCTTGGAGCTTCCTAAAGGACTTCCTGGCCGGGGG CGAACGGGCTGCCTGCGGGCTGAGAGCGTCGAGCTG--------------TCACGCTTGGAGCTTCCTAAAGGACTTCCTGGCCGGGGG CGAACGGGCTGCCTGCGGGCTGAGAGCGTCGAGCTGTCACCAtgggTGGGTGATCACGCTTGGAGCTTCCTAAAGGACTTCCTGGCCG CGAACGGGCTGCCTGCGGGCTGAGAGCGTCGAGCTGTCACCA---------------TGGAGCTTCCTAAAGGACTTCCTGGCCGGGGG CGAACGGGCTGCCTGCGGGCTGAGAGCGTCGA---------------------------

SURF1 Mutations in 12 of 310 sequences $\approx 3.9 \%$
CCCGCGGGGCCGGGTGCGATGGCGGCGGTGGCTGCGTTGCAGCTGGGGCTGCGGGCGGCGGGGCTGGGACGGGTGAGCGCCGGGTGCG
 CCCGCGGGGCCGGGTGCGATGGCGGCGGTGGCTGCGTTGCAGCT-GGGCT----GCGGCGGGGCTGGGACGGGTGAGCGCCGGGTGCG CCCGCGGGGCCGGGTGCGATGGCGGCGGTGGCTGCGTTGCAGCT--------GGGCtGCGcGGCTGGGACGGGTGAGCGCCGGGTGCG CCCGCGGGGCCGGGTGCGATGGCGGCGGTGGCTGCGTTGCAggtgtagtgGCTtgcaggtgcaggtgtagGtGGCTGCGGGCGGCGGG CCCGCGGGGCCGGGTGCGATGGCGGCGGTGGCTGCG-TGCAGCTG-----GCGGGCGGC---GCTGGGACGGGTGAGCGCCGGGTGCG

SYNE1
Mutations in 15 of 3122 sequences $\approx 0.5 \%$
TTGGTGTTGGCTTCGTGCTTCCGGAGGGACCATGGCAACCTCCAGAGGGGCCTCCCGGTGTCCTCGGGATATCGCCAATGTGATGCAG TTGGTGTTGGCTTCGTGCTTCCGGAGGGACCATGGCAA------------CCTCCCGGTGTCCTCGGGATATCGCCAATGTGATGCAG TTGGTGTTGGCTTCGTGCTTCCGGAGGGACCATGGCAACCTCCAGAGG---CTCCCGGTGTCCTCGGGATATCGCCAATGTGATGCAG TTGGTGTTGGCTTCGTGCTTCCGGAGGGACCATGGCAACCTCCAGA---GCCTcCCCGGTGTCCTCGGGATATCGCCAATGTGATGCA TTGGTGTTGGCTTCGTGCTTCCGGAGGGACCATGGCAACCTCCA--------------GGTGTCCTCGGGATATCGCCAATGTGATGCAG TTGGTGTTGGCTTCGTGCTTCCGGAGGGACCATGGCAA-aTC--------aCTCCCGGTGTCCTCGGGATATCGCCAATGTGATGCAG

TAZ Mutations in 38 of 4160 sequences $\approx 0.9 \%$
CCACAGGCCGGCCCGGGGCGCTGGGAGCGCCGGCCGCGGGCCGGGTGGGGATGCCTCTGCACGTGAAGTGGCCGTTCCCCGCGGTGCC CCACAGGCCGGCCCGGGGCGCTGGGA-----------------------------GCCTCTGCACGTGAAGTGGCCGTTCCCCGCGGTGCC CCACAGGCCGGCCC--------------------------------------GGGATGCCTCTGCACGTGAAGTGGCCGTTCCCCGCGGTGCC CCACAGGCCGGCCCGGGGCGCTGGGAGCGCCGGCCGCGGGCCGGGT----ATGCCTCTGCACGTGAAGTGGCCGTTCCCCGCGGTGCC CCACAGGCCGGCCCGGGGCGCTGGGAGCGCCGGCCGCGGGCCGGG----------CTCTGCACGTGAAGTGGCCGTTCCCCGCGGTGCC CCACAGGCCGGCCCGGGGCGCTGGG-GaGCtG-----GGGC---GctGGGATGCCTCTGCACGTGAAGTGGCCGTTCCCCGCGGTGCC

TBX1 Mutations in 254 of 4843 sequences $\approx 5.2 \%$
ACCGGGTGAAGCTTCGCTGGCTGCCAGGATCCCCGGCAGGGATGCACTTCAGCACCGTCACCAGGGACATGGAAGGTGAGCCTCCAGG ACCGGGTGAAGCTTCGCTGGCTGCCAGGATCCCCG-------------------GCACCGTCACCAGGGACATGGAAGGTGAGCCTCCAGG ACCGGGTGAAGCTTCGCTGGCTGCCAGGATCC--------------------------CGGTCACCAGGGACATGGAAGGTGAGCCTCCAGG ACCGGGTGAAGCTTCGCTGGCTGCCAGGATCCCCGG---------------CAGCACCGTCACCAGGGACATGGAAGGTGAGCCTCCAGG ACCGGGTGAAGCTTCGCTGGCTGCCAGGATCCCCGGCAGGGATgcaGCACTTCAGCACCGTCACCAGGGACATGGAAGGTGAGCCTCC ACCGGGTGAAGCTTCGCTGGCTGCCAGGATCCCCGG------------------------CACCAGGGACATGGAAGGTGAGCCTCCAGG

TBX20 Mutations in 553 of 3624 sequences $\approx 15.3 \%$

AGTTCGGACGACCCCGTCCCTGGCCAGGACCGCGTGCTGGGGACCATGGAGTTCACGGCGTCCCCCAAGCCCCAACTCTCCTCCCGGG AGTTCGGACGACCCCGTCCCTGGCCAGGACCGCGTGC---------TGGAGTTCACGGCGTCCCCCAAGCCCCAACTCTCCTCCCGGG AGTTCGGACGACCCCGTCCCTGGCCAGGACCGCGTGCTGGGGaccACCATGGAGTTCACGGCGTCCCCCAAGCCCCAAСТСТССТССС AGTTCGGACGACCCCGTCCCTGGCCAGGACCGCGTGCTGG-------GGAGTTCACGGCGTCCCCCAAGCCCCAACTCTCCTCCCGGG
 AGTTCGGACGACCCCGTCCCTGGCCAGGACCGCGTGC---------TGGAGTTCACGGCGT-CCCCAAGCCCCAAСTСТССТСССGGG

TBX5 Mutations in 266 of 549 sequences $\approx 48.5 \%$
CCTTGCGCGGGCACAGGGCCCTGGGCGCACCATGGCCGACGCAGACGAGGGCTTTGGCCTGGCGCACACGCCTCTGGAGCCTGACGCA

 ССтTGCGCGGGCACAGGGCCCTGGGCGCACCATGGCCGACGCAGACG-

TCAP Mutations in 40 of 3026 sequences $\approx 1.3 \%$
CCTGGGAGGGGAGAGAGAATGAGGAGTGATCATGGCTACCTCAGAGCTGAGCTGCGAGGTGTCGGAGGAGAACTGTGAGCGCCGGGAG CCTGGGAGGGGAGAGAGAATGAGGAGTGATCATGGCTAC-------CTGAGCTGCGAGGTGTCGGAGGAGAACTGTGAGCGCCGGGAG CCTGGGAGGGGAGAGAGAATGAGGAGTGATCATGGCTACCTCAGAGCTG----GCGAGGTGTCGGAGGAGAACTGTGAGCGCCGGGAG CCTGGGAGGGGAGAGAGAATGAGGAGTGATCATGGCTACCTCAG----GAGCTGCGAGGTGTCGGAGGAGAACTGTGAGCGCCGGGAG CCTGGGAGGGGAGAGAGAATGAGGAGTGATCATGGCTACCTCA-----GAGCTGCGAGGTGTCGGAGGAGAACTGTGAGCGCCGGGAG CCTGGGAGGGGAGAGAGAATGAGGAGTGATCATGGCTACCTCagaAGAGCTGAGCTGCGAGGTGTCGGAGGAGAACTGTGAGCGCCGG

WT
$\Delta 8 \times 3$
$\Delta 5 \mathrm{x} 1$
$\Delta 14 \times 1$
$\Delta 12(\Delta 14+2) \mathrm{x} 1$
$\Delta 5(\Delta 6+1) \mathrm{x} 1$

WT
$\Delta 12 \times 9$
$\Delta 13 \times 7$
$+4 \times 4$
$\Delta 14 \times 3$
$\Delta 21 \times 3$

WT
$\Delta 141 \times 2$
$\Delta 5 \times 1$
$\Delta 8(\Delta 10+2) \mathrm{x} 1$
$+26(\Delta 1+27) x 1$
$\Delta 9 \mathrm{xl}$

WT
$\Delta 12 \times 2$
$\Delta 3 \mathrm{x} 1$
$\Delta 2(\Delta 3+1) \mathrm{x} 1$
$\Delta 12 \times 1$
$\Delta 9(\Delta 11+2) \mathrm{x} 1$

WT
$\Delta 26 \times 3$
$\triangle 32 \times 3$
$\triangle 4 \quad x 2$
$\Delta 9 \times 2$
$\Delta 9(\Delta 13+4) \quad x 2$

WT
$\Delta 16 \times 16$
$\Delta 22 \times 12$
413×11
$+3 \times 10$
$\Delta 22 \times 7$

WT
$\triangle 9 \times 48$
$+3 \times 29$
$\Delta 7 \times 21$
$\Delta 244 \times 20$
$\triangle 10 \quad x 14$

WT
$\triangle 337 \times 20$
$\triangle 313 \times 17$
$\triangle 292 \times 17$
$\triangle 380 \times 14$
$\Delta 265 \times 14$

TGFB3 Mutations in 446 of 3334 sequences $\approx 13.4 \%$
TTCСТСТССАGGССТTGССGTСССССТGGССТСТСТTСССАGСТСАСАСАTGAAGATGCACTTGCAAAGGGCTCTGGTGGTCCTGGCC TTCCTCTCCAGGCCTTGCCGTCCCCCTGGCCTCTCTTCCCAGctcaCTCACACATGAAGATGCACTTGCAAAGGGCTCTGGTGGTCCT тTССТСТССАGGССТTGССGTСССССтGGССТСТСтTСС------CACACATGAAGATGCACTTGCAAAGGGCTCTGGTGGTCCTGGCC тTССТСТССАGGССТTGССGTСССССТGGССТСТСТTСС-----------CATGAAGATGCACTTGCAAAGGGCTCTGGTGGTCCTGGCC тTССТСТССАGGССТTGССGTСССССТGGССТСтСТтСС--------CACATGAAGATGCACTTGCAAAGGGCTCTGGTGGTCCTGGCC

WT
$\Delta 7 \times 11$
$\Delta 4 \quad \times 2$
$\triangle 4 \quad \times 1$
$\triangle 5 \times 1$
$+3 \mathrm{x} 1$

WT
$+4 \times 16$
$\Delta 5 \times 15$
$\Delta 9 \times 15$
$\Delta 7 \quad \mathrm{x} 11$

TMEM43 Mutations in 37 of 1524 sequences $\approx 2.4 \%$
GGCGGCGGCAGCGAGCCGGGTCCCACCATGGCCGCGAATGTGAGTATCCCCGGGCCAGCCGGGCCACACCCAGGCTTCCCCGTCGCCC GGCGGCGGCAGCGAGCCGGGTCCCACCATGGCCGCGAATGTGAGTATCCCC------GCCGGGCCACACCCAGGCTTCCCCGTCGCCC GGCGGCGGCAGCGAGCCGGGTCCCACCATGGCCGCGAATGTGAGTATC----GGCCAGCCGGGCCACACCCAGGCTTCCCCGTCGCCC GGCGGCGGCAGCGAGCCGGGTCCCACCATGGCCGCGAATGTGAGT-TCC----GgCAGCCGG--CACACCCAGGCTTCCCCGTCGCCC GGCGGCGGCAGCGAGCCGGGTCCCACCATGGCCGCGAATGT----------------AtCCGGGCCgACACCCAGGCTTCCCCGTCGCC GGCGGCGGCAGCGAGCCGGGTCCCACCATGGCCGCGAATG-----AT----------tGCCGGGCCACACCCAGGCTTCCCCGTCGCCC

TMPO Mutations in 118 of 2337 sequences $\approx 5 \%$
GTGGGGAGGGGGCTTCGCAGATCCCCGAGATGCCGGAGTTCCTGGAAGACCCCTCGGTCCTGACAAAAGACAAGTTGAAGAGTGAGTT GTGGGGAGGGGGCTTCGCAGATCCCCGAGATGCCGGAGTT-----------CCCTCGGTCCTGACAAAAGACAAGTTGAAGAGTGAGTT GTGGGGAGGGGGCTTCGCAGATCCCCGAGATGCCGGAGTTCCT----GAaCCCTCGGTCCTGACAAAAGACAAGTTGAAGAGTGAGTT
 GTGGGGAGGGGGCTTCGCAGATCCCCGAGATGCCGGAGTTCCTG-----aCCCTCGGTCCTGACAAAAGACAAGTTGAAGAGTGAGTT GTGGGGAGGGGGCTTCGCAGATCCCCGAGATGCCGGAGTTC-----七GAaCCCTCGGTCCTGACAAAAGACAAGTTGAAGAGTGAGTT

TNNC1 Mutations in 243 of 3354 sequences $\approx 7.2 \%$
TGGCAACCCCAGCAAGCTGTCCTGTGAGCCGCCAGCATGGATGACATCTACAAGGCTGCGGTGAGGGACAGGGCTGGGTAGGGCTGGG

 TGGCAACCCCAGCAAGCTGTCCTGTGAGCCGCCAG--------------------AAGGCTGCGGTGAGGGACAGGGCTGGGTAGGGCTGGG TGGCAACCCCAGCAAGCTGTCCTGTGAGCCGCCAGCATGGatgacATGACATCTACAAGGCTGCGGTGAGGGACAGGGCTGGGTAGGG

TNNI3 Mutations in 47 of 2759 sequences $\approx 1.7 \%$
TCGCCCTGCCTCCTGCCATTCCCGGCCTGAGTCTCAGCATGGCGGATGGGTGAGTGATGCCCCAAGGCAGTGGGAGTTGGGGGCGACC TCGCCCTGССТССТGССАTTCCCGGCCTGAGTCTCAGC-------ATGGGTGAGTGATGCCCCAAGGCAGTGGGAGTTGGGGGCGACC TCGCССтGССТССТGССАтTCCCGGCCTGAGTCTCAGCATGGcggaCGGATGGGTGAGTGATGCCCCAAGGCAGTGGGAGTTGGGGGC TCGCCCTGCCTCCTGCCATTCCCGGCCTGAGTCTCAGCATG------GGaTGAGTGATGCCCCAAGGCAGTGGGAGTTGGGGGCGACC TCGCCCTGCCTCCTGCCATTCCCGGCCTGAGTCTCAGC--------ATGGGTGAGTGATG-CCCAAGGCAGTGGGAGTTGGGGGCGACC TCGCCCTGCCTCCTGCCATTCCCGGCCTGAGTCTCAGCAT--------GGTGAGTGATGCCCCAAGGCAGTGGGAGTTGGGGGCGACC

TNNT2

Mutations in 67 of 510 sequences $\approx 13.1 \%$

CCTTTGTACCTGCACTGACTTTTTTCTCCTTTTGGAGGGAGAGCAGAGACCATGTCTGACATAGAAGAGGTGGTGGAAGAGTACGAGG CCTTTGTACCTGCACTGACTTTTTTCTCCTTTTGGAGGGAGagcAGCAGAGACCATGTCTGACATAGAAGAGGTGGTGGAAGAGTACG CCTTTGTACCTGCACTGACTTTTTTCTCCTTTTGGAGGGAGAGCAGA----------GACATAGAAGAGGTGGTGGAAGAGTACGAGG CCTTTGTACCTGCACTGACTTTTTTCTCCTTTTGGAGGGAGAGCAGA--------CTGACATAGAAGAGGTGGTGGAAGAGTACGAGG CCTTTGTACCTGCACTGACTTTTTTCTCCTTTTGGAGGGAG----cAGACCATGTCTGACATAGAAGAGGTGGTGGAAGAGTACGAGG CCTTTGTACCTGCACTGACTTTTTTCTCCTTTTGGAGG-------GAGACCATGTCTGACATAGAAGAGGTGGTGGAAGAGTACGAGG

WT
$\Delta 6 \quad x 1$
$\triangle 4 \quad \times 1$
$\Delta 7 \quad(\Delta 8+1) \quad x 1$
$\Delta 14(\Delta 16+2) \quad x 1$
$\Delta 14(\Delta 15+1) \times 1$

WT
$\triangle 10 \times 5$
$\Delta 4(\Delta 5+1) \times 3$
$\Delta 27 \times 3$
$\Delta 5 \quad(\Delta 6+1) \quad x 2$
$\Delta 5(\Delta 7+2) \times 2$

WT
$\triangle 15 \times 15$
$\Delta 218 \times 9$
$\Delta 15 \times 8$
$+5 \times 5$
$\Delta 16 \times 4$

WT
$\Delta 7 \quad \times 10$
$+4 \times 3$
$\Delta 6 \quad(\Delta 7+1) \quad x 3$
$\triangle 8 \quad \times 3$
$\Delta 8 \times 2$

WT
$+3 \times 5$
$\triangle 10$ x3
$\triangle 8 \times 2$
$\Delta 4 \quad(\Delta 5+1) \quad x 2$
$\Delta 7 \times 2$

TPM1 Mutations in 188 of 2913 sequences $\approx 6.5 \%$
TGCTGCAGCCCCAGGGCCCCTCGCCGCCGCCACCATGGACGCCATCAAGAAGAAGATGCAGATGCTGAAGCTCGACAAGGAGAACGCC TGCTGCAGCCCCAGGGCCCCTCGCCGCCGCCACCATG----------------- GAAGATGCAGATGCTGAAGCTCGACAAGGAGAACGCC
 TGCTGCAGCCCCAGGGCCCCTCGCCGCCGCCAC--------------CAAGAAGAAGATGCAGATGCTGAAGCTCGACAAGGAGAACGCC TGCTGCAGCCCCAGGGCCCCTCGCCGCCGCCACCATGGAC-------------GAAGATGCAGATGCTGAAGCTCGACAAGGAGAACGCC TGCTGCAGCCCCAGGGCCCCTCGCCGCCGCCACCATG-------------GAAGAAGATGCAGATGCTGAAGCTCGACAAGGAGAACGCC

TTN Mutations in 28 of 3899 sequences $\approx 0.7 \%$

CTAATTTATTTTCTCTTCTTTTTCAGAGTGCCTAGAAAGATGACAACTCAAGCACCGACGTTTACGCAGCCGTTACAAAGCGTTGTGG CTAATTTATTTTCTCTTCTTTTTCAGAGTGCCTAGAAAGATG----tTCAAGCACCGACGTTTACGCAGCCGTTACAAAGCGTTGTGG CTAATTTATTTTCTCTTCTTTTTCAGAGTGCCTAGAAAGATGacaACAACTCAAGCACCGACGTTTACGCAGCCGTTACAAAGCGTTG CTAATTTATTTTCTCTTCTTTTTCAGAGTGCCTAGA--------------AAGCACCGACGTTTACGCAGCCGTTACAAAGCGTTGTGG
 CTAATTTATTTTCTCTTCTTTTTCAGAGTGCCTAGAAAGATGACA---CcAGCACCGACGTTTACGCAGCCGTTACAAAGCGTTGTGG

TTR Mutations in 187 of 6549 sequences $\approx 2.9 \%$
TCACAGAAGTCCACTCATTCTTGGCAGGATGGCTTCTCATCGTCTGCTCCTCCTCTGCCTTGCTGGACTGGTATTTGTGTCTGAGGCT TCACAGAAGTCCACTCATTCTTGGCAGGATGGCTT------------- СТССТССTCTGCCTTGCTGGACTGGTATTTGTGTCTGAGGCT TCACAGAAGTCCACTCATTCTTGGCAGGATG-----------------GCTCCTCCTCTGCCTTGCTGGACTGGTATTTGTGTCTGAGGCT TCACAGAAGTCCACTCATTCTTGGCAGGATGGCTTCTCAT-------CTCCTCCTCTGCCTTGCTGGACTGGTATTTGTGTCTGAGGCT TCACAGAAGTCCACTCATTCTTGGCAGGAT-------------------CTCCTCCTCTGCCTTGCTGGACTGGTATTTGTGTCTGAGGCT

TXNRD2 Mutations in 6 of 1044 sequences $\approx 0.6 \%$
CCCCACGACGATGGCGGCAATGGCGGTGGCGCTGCGGGGATTAGGAGGGCGCTTCCGGTGGCGGACGCAGGCCGTGGCGGGCGGGGTG CCCCACGACGATGGCGGCAATGGCGGTGGCGCTGC--GGAT-----aGGCGCTTCCGGTGGCGGACGCAGGCCGTGGCGGGCGGGGTG CCCCACGACGATGGCGGCAATGGCGGTGGCGCTGC--GGAT-----aGaCGCTTCCGGTGGCGGACGCAGGCCGTGGCGGGCGGGGTG CCCCACGACGATGGCGGCAATGGCGGTGGCGCTGC---GATTAG------aCTTCCGGTGGCGGACGCAGGCCGTGGCGGGCGGGGTG CCCCACGACGATGGCGGCAATGGCGGTGGCGCTGC---GAT-----aGaCGCTTCCGGTGGCGGACGCAGGCCGTGGCGGGCGGGGTG CCCCACGACGATGGCGGCAATGGCGGTGGCGCT-------------------GCGCTTCCGGTGGCGGACGCAGGCCGTGGCGGGCGGGGTG

WT
$\triangle 14 \times 6$
$\Delta 17 \times 5$
$\Delta 12 \times 5$
$\Delta 11 \times 4$
$\Delta 11 \times 4$

WT
$\Delta 4(\Delta 5+1) \times 3$
$+3 \times 3$
$\Delta 13 \times 2$
$\triangle 38 \times 2$
$\Delta 3 \quad(\Delta 4+1) \quad x 1$

WT
$\triangle 11 \times 32$
$\triangle 14 \times 27$
$\Delta 6 \times 6$
$\Delta 16$ x5
$\Delta 124 \times 3$

VCL

Mutations in 52 of 4159 sequences $\approx 1.3 \%$

ACTTCTCTGTCGCCCGCGGTTCGCCGCCCCGCTCGCCGCCGCGATGCCAGTGTTTCATACGCGCACGATCGAGAGCATCCTGGAGCCG ACTTCTCTGTCGCCCGCGGTTCGCCGCCCCGCTCGCC--------GCCAGTGTTTCATACGCGCACGATCGAGAGCATCCTGGAGCCG ACTTCTCTGTCGCCCGCGGTTCGCCGCCCCGCTCGCCGCC-----GCCAGTGTTTCATACGCGCACGATCGAGAGCATCCTGGAGCCG AСTTCTCTGTCGCCCGCGGTTCGCCGCCCCGCTCGCCGCCG--------------aTCATACGCGCACGATCGAGAGCATCCTGGAGCCG

WT
$\Delta 7(\Delta 8+1) \quad \mathrm{x} 1$
$\Delta 7(\Delta 9+2) \times 1$
$\Delta 9(\Delta 10+1) \times 1$
$\Delta 8(\Delta 10+2) \quad \mathrm{x} 1$
$\Delta 15 \times 1$

WT
$\Delta 8 \times 7$
$\Delta 5 \times 4$
$\Delta 12(\Delta 13+1) x 3$

ACTTCTCTGTCGCCCGCGGTTCGCCGCCCCGCTC------------GCCAGTGTTTCATACGCGCACGATCGAGAGCATCCTGGAGCCG $\triangle 11$ x2

ZASP Mutations in 14 of 453 sequences $\approx 3.1 \%$

ACCCTCTCTACCCTTTGTCTGCAGAGGCGGCCGCTGACAGCACCAGCATGTCTTACAGTGTGACCCTGACTGGGCCCGGGCCCTGGGG AСССтСтСТАСССТтTGTCTGCAGAGGCGGCCGCTGA------CAGCATGTCTTACAGTGTGACCCTGACTGGGCCCGGGCCCTGGGG АСССТСТСТАСССТTTGTCTGCAGAGGCGGCCGCTGACAGCAC---CATGTCTTACAGTGTGACCCTGACTGGGCCCGGGCCCT-GGG АСССТСТСТАСССТTTGTCTGCAGAGGCGGCCGCTGACAG--CCAGCATGT-------aGTGACCCTGACTGGGCCCGGGCCCTGGGG
 AСССТСТСТАСССТTTGTCTGCAGAGGCGGCCG------------------------ TTACAGTGTGACCCTGACTGGGCCCGGGCCCTGGGG

WT
$\Delta 6 \times 4$
$\Delta 4 \times 1$
$\Delta 9(\Delta 10+1) \quad \mathrm{x} 1$
$\Delta 230 \mathrm{x} 1$
$\Delta 18 \times 1$

Online Table III. Predicted off-target loci in TNNT2-KO and DCM-KO iPSC clones

GENE		PCR PRIMERS	AMPLICON (bp)
$\boldsymbol{L O C 2 8 6 0 9 4}$	FW:	GTGGCACAGCAGACTTACAGG	331
ZNF10	RV:	GCAGCCTGATATATCCCCTTCC	
	FW:	GCCTTCATCAGAGATTTGACCCC	345
$\boldsymbol{O R C 4}$	RV:	GAGGCAGAGAACCTCCAGATAAAG	GCCAGACAGTGAGAAAGATGCAG

Online Table IV. Predicted off-target loci in TBX5-KO clones

GENE		PCR PRIMERS	$\begin{gathered} \hline \text { AMPLICON } \\ \text { (bp) } \\ \hline \end{gathered}$
PRKCE	FW:	CAAACCAGCTTCGCTTGGTTCTGA	418
	RV:	CAACCTTGAGCTCGGACCAAAAGA	
RMND5A	FW:	CTGTGCTAGCTAATCCAGTCTGC	412
	RV:	CCAGTTGAGAAAGGTTCCTCCAAG	
SNAR-E	FW:	GAAGGGCTGGGATTACAGGC	325
	RV:	TGACCATGTGATCCATCATGGGG	
TBPL1	FW:	CTAACGCCAGGGGCTTCTGA	377
	RV:	AAGGATGGGAGTGGGAGAGG	
PTPRU	FW:	CAGCAGGAACAAAGAGGCTAAGG	326
	RV:	GAAAAGGGTGAGCTGGCCTG	
MCF2L	FW:	TAGGCAGGGACCCTCCATAC	346
	RV:	ACCCTCAGGCTCTCAGAGTC	
ZC3H3	FW:	GCCCATCAACTGAGGTGGAG	326
	RV:	GGCTGTGGCTGATTCCAGCA	
ZC3H3	FW:	CCCATCAACTGAGGTGGAGAC	326
	RV:	TGGCTGTGGCTGATTCCAGCA	
ARHGEF10	FW:	ACAGAGCCTCTCCCTAGGTG	326
	RV:	CAGAACCCAGCCATTCAGCTGAAG	
TOP3B	FW:	AGCTCTTGAGCCACGGGTGA	331
	RV:	TCAGCATCTTGTGCCCAGCG	
ZNF692	FW:	ATACTTGCTGTCTCCACTCTGCC	327
	RV:	ATGGGTGGTGTTTAGAGCCATGAG	
TRPM1	FW:	CAATGCCTGGCAGACAGCCT	336
	RV:	AGAATTCCGGCCACGTAGCAC	
ASIC2	FW:	CAGGATGATCTCCATCTCCTGAC	330
	RV:	CAAGCCTCAGTTTCCTCGTGTG	
TSPEAR	FW:	GAAGCAAGGCTCTGGGAGGA	357
	RV:	TTCCTCCCAGAGCCCTGCTT	
DAGLA	FW:	CACTGTGCTCCTTCAGACGG	328
	RV:	AGTTAAGGGTGGGGTGGTGG	
SFMBT2	FW:	TTTTGCAGGGGATGGAAAGGGAG	328
	RV:	TCTTGGCCTCTTCTTTGCCCTG	
ANGPT1	FW:	CACCTGGTATTCATAGAGGCCC	406
	RV:	GGAAGTTATCCTGGCAGTGCTAG	
C11orf87	FW:	CCCCCGAAAAGGCAACACAC	367
	RV:	GCCTTGGGCCCAATTCAATTCC	
ABRACL	FW:	GGCTGAAGTTCAGTGGCATGATC	350
	RV:	GGGTTCAAGCAATTCTTCTGCCTC	
MSI2	FW:	TCTCTGTGGATTGGGTGAGAGG	325
	RV:	ATAGGATCTCACCGTGTTAGCCAG	
LY86	FW:	GGCCTTGCTAGGATTAGAACTCAC	330
	RV:	GGGAGCATGTTAGACTCAGCG	
ADAM20P1	FW:	GGAAACTGCCAAGGCTTGGG	417
	RV:	GGTCTCAGATGGAGATGAGGAAC	
BCKDHB	FW:	AAGCCTCTCCCTCTCAGCCT	375
	RV:	AACTGGCTTATCTCTTCTCCCTCC	
NTHL1	FW:	CAGCACCTGTCTCTGAGTGG	345
	RV:	CCCTGTCTTTCAGAGCAAGGTG	

Online Table V. Characterization of action-potentials recordings from isogenic WT and TBX5KO iPSCs-derived cardiomyocytes. Results are provided as mean \pm SD. Maximal diastolic potential (MDP; mV), action potential amplitude (APA; mV), overshoot (mV), upstroke velocity ($\mathrm{V} / \mathrm{sec}$), and action potential duration (APD)50, APD70 and APD90 (the time intervals required to reach $50 \%, 70 \%$ and 90% of repolarization).

	WT-CMs		TBX5KO-CMs	
	Ventricular $(\mathrm{n}=18)$	Atrial $(\mathrm{n}=4)$	Ventricular $(\mathrm{n}=16)$	Atrial (n=3)
MDP (mV)	-62.5 ± 6.1	-60.3 ± 3.8	-63.1 ± 4	-60.2 ± 4.7
APA(mV)	113 ± 7.9	103.8 ± 13.2	112.6 ± 6.8	102.2 ± 6.9
Overshoot (mV)	50.5 ± 7.1	39.2 ± 10	49.4 ± 7.3	42 ± 3.7
Upstroke Velocity (mV)	13.6 ± 3.8	19.3 ± 8.2	13 ± 3.5	12.2 ± 4.1
APD50 (mV)	263.4 ± 80.7	159 ± 58.7	297.6 ± 99.9	153.8 ± 35.2
APD70 (mV)	308.2 ± 96.5	190.6 ± 70.7	353.4 ± 111.2	223.6 ± 43.4
APD90 (mV)	337.5 ± 103.6	226.2 ± 88.5	384.4 ± 114.9	270 ± 49.8
Cycles per minute	53.9 ± 18.5	55.8 ± 33.4	51 ± 20.3	51.6 ± 8.3

