141,715 research outputs found
Informality and the Development and Demolition of Urban Villages in the Chinese Peri-urban Area
The fate of Chinese urban villages (chengzhongcun) has recently attracted both research and policy attention. Two important unaddressed questions are: what are the sources of informality in otherwise orderly Chinese cities; and, will village redevelopment policy eliminate informality in the Chinese city? Reflecting on the long-established study of informal settlements and recent research on informality, it is argued that the informality in China has been created by the dual urban-rural land market and land management system and by an underprovision of migrant housing. The redevelopment of chengzhongcun is an attempt to eliminate this informality and to create more governable spaces through formal land development; but since it fails to tackle the root demand for unregulated living and working space, village redevelopment only leads to the replication of informality in more remote rural villages, in other urban neighbourhoods and, to some extent, in the redeveloped neighbourhoods. © 2012 Urban Studies Journal Limited
Construction of optimal multi-level supersaturated designs
A supersaturated design is a design whose run size is not large enough for
estimating all the main effects. The goodness of multi-level supersaturated
designs can be judged by the generalized minimum aberration criterion proposed
by Xu and Wu [Ann. Statist. 29 (2001) 1066--1077]. A new lower bound is derived
and general construction methods are proposed for multi-level supersaturated
designs. Inspired by the Addelman--Kempthorne construction of orthogonal
arrays, several classes of optimal multi-level supersaturated designs are given
in explicit form: Columns are labeled with linear or quadratic polynomials and
rows are points over a finite field. Additive characters are used to study the
properties of resulting designs. Some small optimal supersaturated designs of
3, 4 and 5 levels are listed with their properties.Comment: Published at http://dx.doi.org/10.1214/009053605000000688 in the
Annals of Statistics (http://www.imstat.org/aos/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Analysis-of-marginal-Tail-Means (ATM): a robust method for discrete black-box optimization
We present a new method, called Analysis-of-marginal-Tail-Means (ATM), for
effective robust optimization of discrete black-box problems. ATM has important
applications to many real-world engineering problems (e.g., manufacturing
optimization, product design, molecular engineering), where the objective to
optimize is black-box and expensive, and the design space is inherently
discrete. One weakness of existing methods is that they are not robust: these
methods perform well under certain assumptions, but yield poor results when
such assumptions (which are difficult to verify in black-box problems) are
violated. ATM addresses this via the use of marginal tail means for
optimization, which combines both rank-based and model-based methods. The
trade-off between rank- and model-based optimization is tuned by first
identifying important main effects and interactions, then finding a good
compromise which best exploits additive structure. By adaptively tuning this
trade-off from data, ATM provides improved robust optimization over existing
methods, particularly in problems with (i) a large number of factors, (ii)
unordered factors, or (iii) experimental noise. We demonstrate the
effectiveness of ATM in simulations and in two real-world engineering problems:
the first on robust parameter design of a circular piston, and the second on
product family design of a thermistor network
Static current-sheet models of quiescent prominences
A particular class of theoretical models idealize the prominence to be a discrete flat electric-current sheet suspended vertically in a potential magnetic field. The weight of the prominence is supported by the Lorentz force in the current sheet. These models can be extended to have curved electric-current sheets and to vary three-dimensionally. The equation for force balance is 1 over 4 pi (del times B) times Bdel p- p9 z=zero. Using Cartesian coordinates we take, for simplicity, a uniform gravity with constant acceleration g in the direction -z. If we are interested not in the detailed internal structure of the prominence, but in the global magnetic configuration around the prominence, we may take prominence plasma to be cold. Consideration is given to how such equilibrium states can be constructed. To simplify the mathematical problem, suppose there is no electric current in the atmosphere except for the discrete currents in the cold prominence sheet. Let us take the plane z =0 to be the base of the atmosphere and restrict our attention to the domain z greater than 0. The task we have is to solve for a magnetic field which is everywhere potential except on some free surface S, subject to suit able to boundary conditions. The surface S is determined by requiring that it possesses a discrete electric current density such that the Lorentz force on it is everywhere vertically upward to balance the weight of the material m(S). Since the magnetic field is potential in the external atmosphere, the latter is decoupled from the magnetic field and its plane parallel hydrostatic pressure and density can be prescribed
- …