We present a new method, called Analysis-of-marginal-Tail-Means (ATM), for
effective robust optimization of discrete black-box problems. ATM has important
applications to many real-world engineering problems (e.g., manufacturing
optimization, product design, molecular engineering), where the objective to
optimize is black-box and expensive, and the design space is inherently
discrete. One weakness of existing methods is that they are not robust: these
methods perform well under certain assumptions, but yield poor results when
such assumptions (which are difficult to verify in black-box problems) are
violated. ATM addresses this via the use of marginal tail means for
optimization, which combines both rank-based and model-based methods. The
trade-off between rank- and model-based optimization is tuned by first
identifying important main effects and interactions, then finding a good
compromise which best exploits additive structure. By adaptively tuning this
trade-off from data, ATM provides improved robust optimization over existing
methods, particularly in problems with (i) a large number of factors, (ii)
unordered factors, or (iii) experimental noise. We demonstrate the
effectiveness of ATM in simulations and in two real-world engineering problems:
the first on robust parameter design of a circular piston, and the second on
product family design of a thermistor network