317 research outputs found
Reconfiguration of ecohydrology as a sustainability tool for Himalayan waterways
Twenty first century faces unprecedented challenges for the management of global waterways. The Himalayan waterways in Asia are exposed to unpredictable climatic warming together with anthropogenic perturbations caused by population growth, land use change and socio-economic development. Given the increased public concerns on the Himalayan Mountain development programmes including the hydropower and tourism, there has been a growing need of the use of interdisciplinary scientific approaches to address water resources challenges that the Himalayan region has faced during the 21st century. Ecohydrology is an emerging scientific tool that explores key hydrological processes regulating structure and function of ecosystems, as well as assessing the impact of biological processes on water cycle variables under rapidly changing environment. The International Geosphere-Biosphere Programme and the International Hydrological Programme hosted by the United Nations Educational, Scientific and Cultural Organization have adopted ecohydrology as a sustainable development tool by linking water resources and poverty eradication and ecosystem restoration, irrigation, energy and sanitation. However, ecohydrology tool needs to be reconfigured for sustainable development of rapidly changing Himalayan waterways. Here we propose the advancement of ecohydrology by developing various integrated frameworks of ecology, hydrology, hydraulics and sociology for resilient waterways in the Asian Himalayas
Interference of steroidogenesis by gold nanorod core/silver shell nanostructures: Implications for reproductive toxicity of silver nanomaterials
Silver nanomaterials are widely used in personal care products. Recent studies have indicated that these nanomaterials may penetrate the blood-placental barrier and gain access to the ovaries. It is largely unknown how silver nanomaterials influence ovarian physiology and functions such as hormone production. This study examines the in vitro toxicology of silver nanomaterials, focusing especially on cytotoxicity and steroidogenesis while exploring their underlying mechanisms. In this study, primary rat granulosa cells were exposed to gold nanorod core/silver shell nanostructures (Au@Ag NRs), which were compared to cells exposed to gold nanorods only. The Au@Ag NRs generated more reactive oxygen species (ROS), reduced mitochondrial membrane potential, and decreased production of adenosine triphosphate. Au@Ag NRs promoted steroidogenesis, including progesterone and estradiol, in a time and dose-dependent manner. Chemical reactivity and transformation of Au@Ag NRs were then studied by electron spin resonance spectroscopy (ESR) and X-ray absorption near edge structure, which identified the generation of free radicals and intracellular silver species. These results suggested that both particle-specific activity and intracellular silver ion release of Au@Ag
Please click Additional Files below to see the full abstract
Bioinformatics analysis of metabolism pathways of archaeal energy reserves
Energy storage compounds play crucial roles in prokaryotic physiology. Five chemical compounds have been identified in prokaryotes as energy reserves: polyphosphate (polyP), polyhydroxyalkanoates (PHAs), glycogen, wax ester (WE) and triacylglycerol (TAG). Currently, no systematic study of archaeal energy storage metabolism exists. In this study, we collected 427 archaeal reference sequences from UniProt database. A thorough pathway screening of energy reserves led to an overview of distribution patterns of energy metabolism in archaea. We also explored how energy metabolism might have impact on archaeal extremophilic phenotypes. Based on the systematic analyses of archaeal proteomes, we confirmed that metabolism pathways of polyP, PHAs and glycogen are present in archaea, but TAG and WE are completely absent. It was also confirmed that PHAs are tightly related to halophilic archaea with larger proteome size and higher GC contents, while polyP is mainly present in methanogens. In sum, this study systematically investigates energy storage metabolism in archaea and provides a clear correlation between energy metabolism and the ability to survive in extreme environments. With more genomic editing tools developed for archaea and molecular mechanisms unravelled for energy storage metabolisms (ESMs), there will be a better understanding of the unique lifestyle of archaea in extreme environments. © 2019, The Author(s)
Management of the refractory vitiligo patient: current therapeutic strategies and future options
Vitiligo is an autoimmune disease that leads to disfiguring depigmented lesions of skin and mucosa. Although effective treatments are available for vitiligo, there are still some patients with poor responses to conventional treatment. Refractory vitiligo lesions are mostly located on exposed sites such as acral sites and lips, leading to significant life stress. Understanding the causes of refractory vitiligo and developing targeted treatments are essential to enhance vitiligo outcomes. In this review, we summarized recent treatment approaches and some potential methods for refractory vitiligo. Janus kinase inhibitors have shown efficacy in refractory vitiligo. A variety of surgical interventions and fractional carbon dioxide laser have been widely applied to combination therapies. Furthermore, melanocyte regeneration and activation therapies are potentially effective strategies. Patients with refractory vitiligo should be referred to psychological monitoring and interventions to reduce the potential pathogenic effects of chronic stress. Finally, methods for depigmentation and camouflage may be beneficial in achieving uniform skin color and improved quality of life. Our ultimate focus is to provide alternative options for refractory vitiligo and to bring inspiration to future research
Study on simulation mechanics and fatigue performance of steel bridge deck rigid flexible composite pavement
Aiming at the fatigue cracking of steel bridge deck pavement and the shortage of river sand resources, a sea sand RPC pavement scheme was proposed. Taking Quanhe steel box girder bridge as the research background, the simulation model was established by using ANSYS finite element software, and the mechanical simulation analysis of the steel bridge deck sea sand RPC-asphalt pavement composite structure was carried out to determine the most unfavorable load position. A three-point fatigue test was carried out to study the fatigue performance of the structure specimen, and a comparative analysis was made with the river sand RPCasphalt surface composite pavement structure. The results show that the maximum tensile stress and strain of RPC-asphalt pavement appear in the upper middle span of U-shaped stiffener of steel box girder, which are 0.5241MPa and 98.2με, respectively, and the surface of the pavement in this area is prone to crack. The RPC-asphalt surface composite pavement structure has not been damaged after 2 million times of fatigue tests, and has not been damaged after 1 million times of fatigue loading after secondary loading, which indicates that it has better fatigue performance
Towards Semantic e-Science for Traditional Chinese Medicine
<p>Abstract</p> <p>Background</p> <p>Recent advances in Web and information technologies with the increasing decentralization of organizational structures have resulted in massive amounts of information resources and domain-specific services in Traditional Chinese Medicine. The massive volume and diversity of information and services available have made it difficult to achieve seamless and interoperable e-Science for knowledge-intensive disciplines like TCM. Therefore, information integration and service coordination are two major challenges in e-Science for TCM. We still lack sophisticated approaches to integrate scientific data and services for TCM e-Science.</p> <p>Results</p> <p>We present a comprehensive approach to build dynamic and extendable e-Science applications for knowledge-intensive disciplines like TCM based on semantic and knowledge-based techniques. The semantic e-Science infrastructure for TCM supports large-scale database integration and service coordination in a virtual organization. We use domain ontologies to integrate TCM database resources and services in a semantic cyberspace and deliver a semantically superior experience including browsing, searching, querying and knowledge discovering to users. We have developed a collection of semantic-based toolkits to facilitate TCM scientists and researchers in information sharing and collaborative research.</p> <p>Conclusion</p> <p>Semantic and knowledge-based techniques are suitable to knowledge-intensive disciplines like TCM. It's possible to build on-demand e-Science system for TCM based on existing semantic and knowledge-based techniques. The presented approach in the paper integrates heterogeneous distributed TCM databases and services, and provides scientists with semantically superior experience to support collaborative research in TCM discipline.</p
Genetic Variants in WNT2B and BTRC Predict Melanoma Survival
Cutaneous melanoma (CM) is the most lethal skin cancer. The Wnt pathway has an impact on development, invasion and metastasis of CM, thus likely affecting CM prognosis. Using data from a published genome-wide association study (GWAS) from The University of Texas M.D. Anderson Cancer Center, we assessed the associations of 19,830 common single-nucleotide polymorphisms (SNPs) in 151 Wnt pathway autosomal genes with CM-specific survival (CMSS) and then validated significant SNPs in another GWAS from Harvard University. In the single-locus analysis, 1,855 SNPs were significantly associated with CMSS at P T and BTRC rs61873997 G>A) that showed a predictive role in CMSS, with an effect-allele-attributed hazards ratio [adjHR of 1.99 (95% confidence interval (CI) = 1.41-2.81, P = 8.10E-05) and 0.61 (0.46-0.80, 3.12E-04), respectively]. Collectively, these variants in the Wnt pathway genes may be biomarkers for outcomes of CM patients, if validated by larger studies
Recommended from our members
Liquid biopsy-based single-cell metabolic phenotyping of lung cancer patients for informative diagnostics.
Accurate prediction of chemo- or targeted therapy responses for patients with similar driver oncogenes through a simple and least-invasive assay represents an unmet need in the clinical diagnosis of non-small cell lung cancer. Using a single-cell on-chip metabolic cytometry and fluorescent metabolic probes, we show metabolic phenotyping on the rare disseminated tumor cells in pleural effusions across a panel of 32 lung adenocarcinoma patients. Our results reveal extensive metabolic heterogeneity of tumor cells that differentially engage in glycolysis and mitochondrial oxidation. The cell number ratio of the two metabolic phenotypes is found to be predictive for patient therapy response, physiological performance, and survival. Transcriptome analysis reveals that the glycolytic phenotype is associated with mesenchymal-like cell state with elevated expression of the resistant-leading receptor tyrosine kinase AXL and immune checkpoint ligands. Drug targeting AXL induces a significant cell killing in the glycolytic cells without affecting the cells with active mitochondrial oxidation
- …