1,221 research outputs found

    Shock waves in two-dimensional granular flow: effects of rough walls and polydispersity

    Get PDF
    We have studied the two-dimensional flow of balls in a small angle funnel, when either the side walls are rough or the balls are polydisperse. As in earlier work on monodisperse flows in smooth funnels, we observe the formation of kinematic shock waves/density waves. We find that for rough walls the flows are more disordered than for smooth walls and that shock waves generally propagate more slowly. For rough wall funnel flow, we show that the shock velocity and frequency obey simple scaling laws. These scaling laws are consistent with those found for smooth wall flow, but here they are cleaner since there are fewer packing-site effects and we study a wider range of parameters. For pipe flow (parallel side walls), rough walls support many shock waves, while smooth walls exhibit fewer or no shock waves. For funnel flows of balls with varying sizes, we find that flows with weak polydispersity behave qualitatively similar to monodisperse flows. For strong polydispersity, scaling breaks down and the shock waves consist of extended areas where the funnel is blocked completely.Comment: 11 pages, 15 figures; accepted for PR

    Magnetism in systems with various dimensionality: A comparison between Fe and Co

    Full text link
    A systematic ab initio study is performed for the spin and orbital moments and for the validity of the sum rules for x-ray magnetic circular dichroism for Fe systems with various dimensionality (bulk, Pt-supported monolayers and monatomic wires, free-standing monolayers and monatomic wires). Qualitatively, the results are similar to those for the respective Co systems, with the main difference that for the monatomic Fe wires the term in the spin sum rule is much larger than for the Co wires. The spin and orbital moments induced in the Pt substrate are also discussed.Comment: 4 page

    Continuous fabrication of microcapsules with controllable metal covered nanoparticle arrays using droplet microfluidics for localized surface plasmon resonance

    Get PDF
    Particle-laden plasmonic microcapsules were fabricated continuously using microfluidic technology, showing high LSPR with high-density “hot-spot” scattering sites.</p

    Integration of molecular biology tools for identifying promoters and genes abundantly expressed in flowers of Oncidium Gower Ramsey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Orchids comprise one of the largest families of flowering plants and generate commercially important flowers. However, model plants, such as <it>Arabidopsis thaliana </it>do not contain all plant genes, and agronomic and horticulturally important genera and species must be individually studied.</p> <p>Results</p> <p>Several molecular biology tools were used to isolate flower-specific gene promoters from <it>Oncidium </it>'Gower Ramsey' (<it>Onc</it>. GR). A cDNA library of reproductive tissues was used to construct a microarray in order to compare gene expression in flowers and leaves. Five genes were highly expressed in flower tissues, and the subcellular locations of the corresponding proteins were identified using lip transient transformation with fluorescent protein-fusion constructs. BAC clones of the 5 genes, together with 7 previously published flower- and reproductive growth-specific genes in <it>Onc</it>. GR, were identified for cloning of their promoter regions. Interestingly, 3 of the 5 novel flower-abundant genes were putative trypsin inhibitor (<it>TI</it>) genes (<it>OnTI1</it>, <it>OnTI2 </it>and <it>OnTI3</it>), which were tandemly duplicated in the same BAC clone. Their promoters were identified using transient GUS reporter gene transformation and stable <it>A. thaliana </it>transformation analyses.</p> <p>Conclusions</p> <p>By combining cDNA microarray, BAC library, and bombardment assay techniques, we successfully identified flower-directed orchid genes and promoters.</p

    Nonexotic Neutral Gauge Bosons

    Get PDF
    We study theoretical and experimental constraints on electroweak theories including a new color-singlet and electrically-neutral gauge boson. We first note that the electric charges of the observed fermions imply that any such Z' boson may be described by a gauge theory in which the Abelian gauge groups are the usual hypercharge along with another U(1) component in a kinetic-diagonal basis. Assuming that the observed quarks and leptons have generation-independent U(1) charges, and that no new fermions couple to the standard model gauge bosons, we find that their U(1) charges form a two-parameter family consistent with anomaly cancellation and viable fermion masses, provided there are at least three right-handed neutrinos. We then derive bounds on the Z' mass and couplings imposed by direct production and Z-pole measurements. For generic charge assignments and a gauge coupling of electromagnetic strength, the strongest lower bound on the Z' mass comes from Z-pole measurements, and is of order 1 TeV. If the new U(1) charges are proportional to B-L, however, there is no tree-level mixing between the Z and Z', and the best bounds come from the absence of direct production at LEPII and the Tevatron. If the U(1) gauge coupling is one or two orders of magnitude below the electromagnetic one, these bounds are satisfied for most values of the Z' mass.Comment: 26 pages, 2 figures. A comparison with the LEP bounds on sneutrino resonances is include

    Granular discharge and clogging for tilted hoppers

    Full text link
    We measure the flux of spherical glass beads through a hole as a systematic function of both tilt angle and hole diameter, for two different size beads. The discharge increases with hole diameter in accord with the Beverloo relation for both horizontal and vertical holes, but in the latter case with a larger small-hole cutoff. For large holes the flux decreases linearly in cosine of the tilt angle, vanishing smoothly somewhat below the angle of repose. For small holes it vanishes abruptly at a smaller angle. The conditions for zero flux are discussed in the context of a {\it clogging phase diagram} of flow state vs tilt angle and ratio of hole to grain size

    Antiferromagnetism and superconductivity of the two-dimensional extended t–J model

    No full text
    The mechanism of high-temperature superconductivity (HTS) and the correlation between the antiferromagnetic long-range order (AFLRO) and superconductivity (SC) phases are the central issues of the study of HTS theory. SC and AFLRO of the hole-doped two-dimensional extended t- J model are studied by the variational Monte Carlo method. The results show that SC is greatly enhanced by the long-range hopping terms t' and t" for the optimal and overdoped cases. The phase of coexisting SC and AFM in the t-J model disappears when t and t" are included. It is concluded that the extended t-J model provides a more accurate description for HTS than the traditional t-J model does. The momentum distribution function n(k) and the shape of Fermi surface play critical roles for establishing the phase diagram of HTS materials

    Evolution of RFID applications in construction:A literature review

    Get PDF
    Radio frequency identification (RFID) technology has been widely used in the field of construction during the last two decades. Basically, RFID facilitates the control on a wide variety of processes in different stages of the lifecycle of a building, from its conception to its inhabitance. The main objective of this paper is to present a review of RFID applications in the construction industry, pointing out the existing developments, limitations and gaps. The paper presents the establishment of the RFID technology in four main stages of the lifecycle of a facility: planning and design, construction and commission and operation and maintenance. Concerning this last stage, an RFID application aiming to facilitate the identification of pieces of furniture in scanned inhabited environments is presented. Conclusions and future advances are presented at the end of the paper

    Origin of strange metallic phase in cuprate superconductors

    Full text link
    The origin of strange metallic phase is shown to exist due to these two conditions---(i) the electrons are strongly interacting such that there are no band and Mott-Hubbard gaps, and (ii) the electronic energy levels are crossed in such a way that there is an electronic energy gap between two energy levels associated to two different wave functions. The theory is also exploited to explain (i) the upward- and downward-shifts in the TT-linear resistivity curves, and (ii) the spectral weight transfer observed in the soft X-ray absorption spectroscopic measurements of the La-Sr-Cu-O Mott insulator.Comment: To be published in J. Supercond. Nov. Mag

    Cubic and hexagonal InGaAsN dilute arsenides by unintentional homogeneous incorporation of As into InGaN

    Full text link
    Arsenic alloying is observed for epitaxial layers nominally intended to be In0.75Ga0.25N. Voids form beneath their interfaces with GaAs substrates, acting as sources of Ga + As out-diffusion into the growing epilayers. As a result, heteroepitaxial single-phase quaternary InxGa1-xAsyN1-y, films are formed with x similar to 0.55 and 0.05 menor que y menor que 0,10. While an undoped epilayer retains the wurtzite structure, a Mn-doped sample showed randomly spaced dopant segregations, which, together with a slightly higher As concentration, led to a transformation from the hexagonal to the twinned cubic phase
    corecore