669 research outputs found

    A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology

    Get PDF
    The ongoing pandemic spread of a new human coronavirus, SARS-CoV-2, which is associated with severe pneumonia/disease (COVID-19), has resulted in the generation of tens of thousands of virus genome sequences. The rate of genome generation is unprecedented, yet there is currently no coherent nor accepted scheme for naming the expanding phylogenetic diversity of SARS-CoV-2. Here, we present a rational and dynamic virus nomenclature that uses a phylogenetic framework to identify those lineages that contribute most to active spread. Our system is made tractable by constraining the number and depth of hierarchical lineage labels and by flagging and delabelling virus lineages that become unobserved and hence are probably inactive. By focusing on active virus lineages and those spreading to new locations, this nomenclature will assist in tracking and understanding the patterns and determinants of the global spread of SARS-CoV-2

    The effects of environmental disturbances on tumor growth

    Full text link
    In this study, the analytic expressions of the steady probability distribution of tumor cells were established based on the steady state solution to the corresponding Fokker-Planck equation. Then, the effects of two uncorrelated white noises on tumor cell growth were investigated. It was found that the predation rate plays the main role in determining whether or not the noise is favorable for tumor growth.Comment: 14 pages, 11 figures. Note: The paper will be published on volume 42 of the Brazilian Journal of Physic

    Investigation on Photovoltaic Performance based on Matchstick-Like Cu2S–In2S3Heterostructure Nanocrystals and Polymer

    Get PDF
    In this paper, we synthesized a novel type II cuprous sulfide (Cu2S)–indium sulfide (In2S3) heterostructure nanocrystals with matchstick-like morphology in pure dodecanethiol. The photovoltaic properties of the heterostructure nanocrystals were investigated based on the blends of the nanocrystals and poly(2-methoxy-5-(2′-ethylhexoxy)-p-phenylenevinylene) (MEH-PPV). In comparison with the photovoltaic properties of the blends of Cu2S or In2S3nanocrystals alone and MEH-PPV, the power conversion efficiency of the hybrid device based on blend of Cu2S–In2S3and MEH-PPV is enhanced by ~3–5 times. This improvement is consistent with the improved exciton dissociation or separation and better charge transport abilities in type II heterostructure nanocrystals

    Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2

    Full text link
    Weyl semimetal is a new quantum state of matter [1-12] hosting the condensed matter physics counterpart of relativisticWeyl fermion [13] originally introduced in high energy physics. The Weyl semimetal realized in the TaAs class features multiple Fermi arcs arising from topological surface states [10, 11, 14-16] and exhibits novel quantum phenomena, e.g., chiral anomaly induced negative mag-netoresistance [17-19] and possibly emergent supersymmetry [20]. Recently it was proposed theoretically that a new type (type-II) of Weyl fermion [21], which does not have counterpart in high energy physics due to the breaking of Lorentz invariance, can emerge as topologically-protected touching between electron and hole pockets. Here, we report direct spectroscopic evidence of topological Fermi arcs in the predicted type-II Weyl semimetal MoTe2 [22-24]. The topological surface states are confirmed by directly observing the surface states using bulk-and surface-sensitive angle-resolved photoemission spectroscopy (ARPES), and the quasi-particle interference (QPI) pattern between the two putative Fermi arcs in scanning tunneling microscopy (STM). Our work establishes MoTe2 as the first experimental realization of type-II Weyl semimetal, and opens up new opportunities for probing novel phenomena such as exotic magneto-transport [21] in type-II Weyl semimetals.Comment: submitted on 01/29/2016. Nature Physics, in press. Spectroscopic evidence of the Fermi arcs from two complementary surface sensitive probes - ARPES and STS. A comparison of the calculated band structure for T_d and 1T' phase to identify the topological Fermi arcs in the T_d phase is also included in the supplementary informatio

    Smoking patterns and sociodemographic factors associated with tobacco use among Chinese rural male residents: a descriptive analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although evidence has shown high prevalence rates of tobacco use in the general urban populations in China, relatively little is known in its rural population. The purposes of this study were to examine smoking patterns and sociodemographic correlates of smoking in a sample of rural Chinese male residents.</p> <p>Methods</p> <p>The study employed a cross-sectional, multi-stage sampling design. Residents (N = 4,414; aged 15 years and older) were recruited from four geographic regions in China. Information on participants' tobacco use (of all forms), including their daily use, and sociodemographic characteristics were collected via survey questionnaires and the resultant data were analyzed using chi-square tests and logistic regression procedures.</p> <p>Results</p> <p>The overall smoking prevalence in the study sample was 66.8% (n = 2,950). Of these, the average use of tobacco products per day was 12.70 (SD = 7.99) and over 60% reported daily smoking of more than 10 cigarettes. Geographic regions of the study areas, age of the participants, marital status, ethnicity, education, occupation, and average personal annual income were found to be significantly associated with an increased likelihood of smoking among rural Chinese male residents.</p> <p>Conclusion</p> <p>There is a high smoking prevalence in the Chinese rural population and smoking behaviors are associated with important sociodemographic factors. Findings suggest the need for tobacco control and intervention policies aimed at reducing tobacco use in Chinese rural smoking populations.</p

    Effect of Aspect Ratio on Field Emission Properties of ZnO Nanorod Arrays

    Get PDF
    ZnO nanorod arrays are prepared on a silicon wafer through a multi-step hydrothermal process. The aspect ratios and densities of the ZnO nanorod arrays are controlled by adjusting the reaction times and concentrations of solution. The investigation of field emission properties of ZnO nanorod arrays revealed a strong dependency on the aspect ratio and their density. The aspect ratio and spacing of ZnO nanorod arrays are 39 and 167 nm (sample C), respectively, to exhibit the best field emission properties. The turn-on field and threshold field of the nanorod arrays are 3.83 V/μm and 5.65 V/μm, respectively. Importantly, the sample C shows a highest enhancement of factorβ, which is 2612. The result shows that an optimum density and aspect ratio of ZnO nanorod arrays have high efficiency of field emission

    Surfactant-Assisted in situ Chemical Etching for the General Synthesis of ZnO Nanotubes Array

    Get PDF
    In this paper, a general low-cost and substrate-independent chemical etching strategy is demonstrated for the synthesis of ZnO nanotubes array. During the chemical etching, the nanotubes array inherits many features from the preformed nanorods array, such as the diameter, size distribution, and alignment. The preferential etching along c axis and the surfactant protection to the lateral surfaces are considered responsible for the formation of ZnO nanotubes. This surfactant-assisted chemical etching strategy is highly expected to advance the research in the ZnO nanotube-based technology

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Nicotine Dependence among Rural-Urban Migrants in China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The complex mechanism of nicotine dependency makes it challenging to evaluate dependence or progress towards dependence. The aim of this study was to estimate nicotine dependence levels and identify determinants of dependence among Chinese rural-urban migrants.</p> <p>Methods</p> <p>Multi-stage systematic sampling was used to select 4,198 rural-urban migrants aged 18 years or older from three metropolises in China. A structured questionnaire was administered during face-to-face interviews. Nicotine dependence among participants was assessed by means of the six-item Mandarin Chinese Version of the Fagerström Test for Nicotine Dependence (CFTND). Determinants of dependence were analyzed using multivariate analysis of variance (MANOVA).</p> <p>Results</p> <p>Among 4,198 participants, estimated current, daily, and occasional smoking rates were 28.3%, 21.2%, and 7.1%, respectively. The CTFND score for the 894 daily smokers was 3.39(SD: 2.32). MANOVA showed that work type, age at first migration, length of migration, and number of cities ever lived were associated with nicotine dependence.</p> <p>Conclusion</p> <p>A migratory lifestyle is associated with nicotine dependence. Results could inform the design of tobacco control programs that target Chinese rural-urban migrant workers as a special at-risk population.</p
    corecore