91 research outputs found

    Fabrication of a Miniature Zinc Aluminum Oxide Nanowire Array Gas Sensor and Application for Environmental Monitoring

    Get PDF
    A miniature n-type semiconductor gas sensor was fabricated successfully using zinc aluminum oxide nanowire array and applied to sense oxygen. The present study provided a novel method to produce zinc aluminum alloy nanowire 80 nm in diameter by the vacuum die casting technique and then obtain zinc aluminum oxide nanowire array using the thermal oxidation technique. The gas sensing properties were evaluated through the change of the sensitivity. The factors influencing the sensitivity of the gas sensor, such as the alloy composition, operating temperature, and oxygen concentration, were investigated further. Experimental results indicated that the maximum sensitivity could be acquired when the weight percentage of aluminum was 5% in zinc aluminum alloy at the operating temperature of 200°C

    Assembling a cellulase cocktail and a cellodextrin transporter into a yeast host for CBP ethanol production

    Get PDF
    Background: Many microorganisms possess enzymes that can efficiently degrade lignocellulosic materials, but donot have the capability to produce a large amount of ethanol. Thus, attempts have been made to transform suchenzymes into fermentative microbes to serve as hosts for ethanol production. However, an efficient host for aconsolidated bioprocess (CBP) remains to be found. For this purpose, a synthetic biology technique that cantransform multiple genes into a genome is instrumental. Moreover, a strategy to select cellulases that interactsynergistically is needed.Results: To engineer a yeast for CBP bio-ethanol production, a synthetic biology technique, called “promoter-basedgene assembly and simultaneous overexpression” (PGASO), that can simultaneously transform and express multiplegenes in a kefir yeast, Kluyveromyces marxianus KY3, was recently developed. To formulate an efficient cellulasecocktail, a filter-paper-activity assay for selecting heterologous cellulolytic enzymes was established in this study andused to select five cellulase genes, including two cellobiohydrolases, two endo-β-1,4-glucanases and onebeta-glucosidase genes from different fungi. In addition, a fungal cellodextrin transporter gene was chosen totransport cellodextrin into the cytoplasm. These six genes plus a selection marker gene were one-step assembledinto the KY3 genome using PGASO. Our experimental data showed that the recombinant strain KR7 could expressthe five heterologous cellulase genes and that KR7 could convert crystalline cellulose into ethanol.Conclusion: Seven heterologous genes, including five cellulases, a cellodextrin transporter and a selection marker,were simultaneously transformed into the KY3 genome to derive a new strain, KR7, which could directly convertcellulose to ethanol. The present study demonstrates the potential of our strategy of combining a cocktailformulation protocol and a synthetic biology technique to develop a designer yeast host

    Ferulic Acid Enhances Peripheral Nerve Regeneration across Long Gaps

    Get PDF
    This study investigated the effect of ferulic acid (FA) on peripheral nerve injury. In the in vitro test, the effect of FA on viability of Schwann cells was studied. In the in vivo test, right sciatic nerves of the rats were transected, and a 15 mm nerve defect was created. A nerve conduit made of silicone rubber tube filled with FA (5 and 25 μg/mL), or saline (control), was implanted into the nerve defect. Results show that the number of proliferating Schwann cells increased significantly in the FA-treated group at 25 μg/mL compared to that in the control group. After 8 weeks, the FA-treated group at 25 μg/mL had a higher rate of successful regeneration across the wide gap, a significantly calcitonin gene-related peptide (CGRP) staining of the lamina I-II regions in the dorsal horn ipsilateral to the injury, a significantly diminished number of macrophages recruited, and a significantly shortening of the latency and an acceleration of the nerve conductive velocity (NCV) of the evoked muscle action potentials (MAPs) compared with the controls. In summary, the FA may be useful in the development of future strategies for the treatment of peripheral nerve injury

    Enhanced Differentiation of Three-Gene-Reprogrammed Induced Pluripotent Stem Cells into Adipocytes via Adenoviral-Mediated PGC-1α Overexpression

    Get PDF
    Induced pluripotent stem cells formed by the introduction of only three factors, Oct4/Sox2/Klf4 (3-gene iPSCs), may provide a safer option for stem cell-based therapy than iPSCs conventionally introduced with four-gene iPSCs. Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) plays an important role during brown fat development. However, the potential roles of PGC-1α in regulating mitochondrial biogenesis and the differentiation of iPSCs are still unclear. Here, we investigated the effects of adenovirus-mediated PGC-1α overexpression in 3-gene iPSCs. PGC-1α overexpression resulted in increased mitochondrial mass, reactive oxygen species production, and oxygen consumption. Microarray-based bioinformatics showed that the gene expression pattern of PGC-1α-overexpressing 3-gene iPSCs resembled the expression pattern observed in adipocytes. Furthermore, PGC-1α overexpression enhanced adipogenic differentiation and the expression of several brown fat markers, including uncoupling protein-1, cytochrome C, and nuclear respiratory factor-1, whereas it inhibited the expression of the white fat marker uncoupling protein-2. Furthermore, PGC-1α overexpression significantly suppressed osteogenic differentiation. These data demonstrate that PGC-1α directs the differentiation of 3-gene iPSCs into adipocyte-like cells with features of brown fat cells. This may provide a therapeutic strategy for the treatment of mitochondrial disorders and obesity

    Functional characterization of cellulases identified from the cow rumen fungus Neocallimastix patriciarum W5 by transcriptomic and secretomic analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Neocallimastix patriciarum</it> is one of the common anaerobic fungi in the digestive tracts of ruminants that can actively digest cellulosic materials, and its cellulases have great potential for hydrolyzing cellulosic feedstocks. Due to the difficulty in culture and lack of a genome database, it is not easy to gain a global understanding of the glycosyl hydrolases (<it>GHs</it>) produced by this anaerobic fungus.</p> <p>Results</p> <p>We have developed an efficient platform that uses a combination of transcriptomic and proteomic approaches to <it>N. patriciarum </it>to accelerate gene identification, enzyme classification and application in rice straw degradation. By conducting complementary studies of transcriptome (Roche 454 GS and Illumina GA IIx) and secretome (ESI-Trap LC-MS/MS), we identified 219 putative <it>GH </it>contigs and classified them into 25 <it>GH</it> families. The secretome analysis identified four major enzymes involved in rice straw degradation: β-glucosidase, endo-1,4-β-xylanase, xylanase B and Cel48A exoglucanase. From the sequences of assembled contigs, we cloned 19 putative cellulase genes, including the <it>GH1</it>, <it>GH3</it>, <it>GH5</it>, <it>GH6</it>, <it>GH9</it>, <it>GH18</it>, <it>GH43 </it>and <it>GH48 </it>gene families, which were highly expressed in <it>N. patriciarum </it>cultures grown on different feedstocks.</p> <p>Conclusions</p> <p>These <it>GH </it>genes were expressed in Pichia pastoris and/or Saccharomyces cerevisiae for functional characterization. At least five novel cellulases displayed cellulytic activity for glucose production. One β-glucosidase (W5-16143) and one exocellulase (W5-CAT26) showed strong activities and could potentially be developed into commercial enzymes.</p

    4β-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The crude extract of the fruit bearing plant, <it>Physalis peruviana </it>(golden berry), demonstrated anti-hepatoma and anti-inflammatory activities. However, the cellular mechanism involved in this process is still unknown.</p> <p>Methods</p> <p>Herein, we isolated the main pure compound, 4β-Hydroxywithanolide (4βHWE) derived from golden berries, and investigated its antiproliferative effect on a human lung cancer cell line (H1299) using survival, cell cycle, and apoptosis analyses. An alkaline comet-nuclear extract (NE) assay was used to evaluate the DNA damage due to the drug.</p> <p>Results</p> <p>It was shown that DNA damage was significantly induced by 1, 5, and 10 μg/mL 4βHWE for 2 h in a dose-dependent manner (<it>p </it>< 0.005). A trypan blue exclusion assay showed that the proliferation of cells was inhibited by 4βHWE in both dose- and time-dependent manners (<it>p </it>< 0.05 and 0.001 for 24 and 48 h, respectively). The half maximal inhibitory concentrations (IC<sub>50</sub>) of 4βHWE in H1299 cells for 24 and 48 h were 0.6 and 0.71 μg/mL, respectively, suggesting it could be a potential therapeutic agent against lung cancer. In a flow cytometric analysis, 4βHWE produced cell cycle perturbation in the form of sub-G<sub>1 </sub>accumulation and slight arrest at the G<sub>2</sub>/M phase with 1 μg/mL for 12 and 24 h, respectively. Using flow cytometric and annexin V/propidium iodide immunofluorescence double-staining techniques, these phenomena were proven to be apoptosis and complete G<sub>2</sub>/M arrest for H1299 cells treated with 5 μg/mL for 24 h.</p> <p>Conclusions</p> <p>In this study, we demonstrated that golden berry-derived 4βHWE is a potential DNA-damaging and chemotherapeutic agent against lung cancer.</p

    Women with endometriosis have higher comorbidities: Analysis of domestic data in Taiwan

    Get PDF
    AbstractEndometriosis, defined by the presence of viable extrauterine endometrial glands and stroma, can grow or bleed cyclically, and possesses characteristics including a destructive, invasive, and metastatic nature. Since endometriosis may result in pelvic inflammation, adhesion, chronic pain, and infertility, and can progress to biologically malignant tumors, it is a long-term major health issue in women of reproductive age. In this review, we analyze the Taiwan domestic research addressing associations between endometriosis and other diseases. Concerning malignant tumors, we identified four studies on the links between endometriosis and ovarian cancer, one on breast cancer, two on endometrial cancer, one on colorectal cancer, and one on other malignancies, as well as one on associations between endometriosis and irritable bowel syndrome, one on links with migraine headache, three on links with pelvic inflammatory diseases, four on links with infertility, four on links with obesity, four on links with chronic liver disease, four on links with rheumatoid arthritis, four on links with chronic renal disease, five on links with diabetes mellitus, and five on links with cardiovascular diseases (hypertension, hyperlipidemia, etc.). The data available to date support that women with endometriosis might be at risk of some chronic illnesses and certain malignancies, although we consider the evidence for some comorbidities to be of low quality, for example, the association between colon cancer and adenomyosis/endometriosis. We still believe that the risk of comorbidity might be higher in women with endometriosis than that we supposed before. More research is needed to determine whether women with endometriosis are really at risk of these comorbidities
    corecore