8,492 research outputs found

    Domain wall space-times with a cosmological constant

    Get PDF
    We solve vacuum Einstein's field equations with the cosmological constant in space-times admitting 3-parameter group of isometries with 2-dimensional space-like orbits. The general exact solutions, which are represented in the advanced and retarded null coordinates, have two arbitrary functions due to the freedom of choosing null coordinates. In the thin-wall approximation, the Israel's junction conditions yield one constraint equation on these two functions in spherical, planar, and hyperbolic domain wall space-times with reflection symmetry. The remain freedom of choosing coordinates are completely fixed by requiring that when surface energy density σ0\sigma_0 of domain walls vanishes, the metric solutions will return to some well-known solutions. It leads us to find a planar domain wall solution, which is conformally flat, in the de Sitter universe.Comment: 9 pages. no figur

    Spin-valley qubit in nanostructures of monolayer semiconductors: Optical control and hyperfine interaction

    Get PDF
    We investigate the optical control possibilities of spin-valley qubit carried by single electrons localized in nanostructures of monolayer TMDs, including small quantum dots formed by lateral heterojunction and charged impurities. The quantum controls are discussed when the confinement induces valley hybridization and when the valley hybridization is absent. We show that the bulk valley and spin optical selection rules can be inherited in different forms in the two scenarios, both of which allow the definition of spin-valley qubit with desired optical controllability. We also investigate nuclear spin induced decoherence and quantum control of electron-nuclear spin entanglement via intervalley terms of the hyperfine interaction. Optically controlled two-qubit operations in a single quantum dot are discussed.Comment: 17pages, 10 figure

    Extreme Learning Machine Based Non-Iterative and Iterative Nonlinearity Mitigation for LED Communications

    Full text link
    This work concerns receiver design for light emitting diode (LED) communications where the LED nonlinearity can severely degrade the performance of communications. We propose extreme learning machine (ELM) based non-iterative receivers and iterative receivers to effectively handle the LED nonlinearity and memory effects. For the iterative receiver design, we also develop a data-aided receiver, where data is used as virtual training sequence in ELM training. It is shown that the ELM based receivers significantly outperform conventional polynomial based receivers; iterative receivers can achieve huge performance gain compared to non-iterative receivers; and the data-aided receiver can reduce training overhead considerably. This work can also be extended to radio frequency communications, e.g., to deal with the nonlinearity of power amplifiers

    Quantum-trajectory analysis for charge transfer in solid materials induced by strong laser fields

    Full text link
    We investigate the dependence of charge transfer on the intensity of driving laser field when SiO2 crystal is irradiated by an 800 nm laser. It is surprising that the direction of charge transfer undergoes a sudden reversal when the driving laser intensity exceeds critical values with different carrier envelope phases. By applying quantum-trajectory analysis, we find that the Bloch oscillation plays an important role in charge transfer in solid. Also, we study the interaction of strong laser with gallium nitride (GaN) that is widely used in optoelectronics. A pump-probe scheme is applied to control the quantum trajectories of the electrons in the conduction band. The signal of charge transfer is controlled successfully by means of theoretically proposed approach

    Projected Density Matrix Embedding Theory with Applications to the Two-Dimensional Hubbard Model

    Get PDF
    Density matrix embedding theory (DMET) is a quantum embedding theory for strongly correlated systems. From a computational perspective, one bottleneck in DMET is the optimization of the correlation potential to achieve self-consistency, especially for heterogeneous systems of large size. We propose a new method, called projected density matrix embedding theory (p-DMET), which achieves self-consistency without needing to optimize a correlation potential. We demonstrate the performance of p-DMET on the two-dimensional Hubbard model.Comment: 25 pages, 8 figure

    Geometry of the set of quantum correlations

    Full text link
    It is well known that correlations predicted by quantum mechanics cannot be explained by any classical (local-realistic) theory. The relative strength of quantum and classical correlations is usually studied in the context of Bell inequalities, but this tells us little about the geometry of the quantum set of correlations. In other words, we do not have good intuition about what the quantum set actually looks like. In this paper we study the geometry of the quantum set using standard tools from convex geometry. We find explicit examples of rather counter-intuitive features in the simplest non-trivial Bell scenario (two parties, two inputs and two outputs) and illustrate them using 2-dimensional slice plots. We also show that even more complex features appear in Bell scenarios with more inputs or more parties. Finally, we discuss the limitations that the geometry of the quantum set imposes on the task of self-testing.Comment: 11 + 8 pages, 6 figures, v2: added an argument relating self-testing and extremality, v3: typos corrected, results unchanged, published versio

    A Revisit of Shape Editing Techniques: from the Geometric to the Neural Viewpoint

    Get PDF
    3D shape editing is widely used in a range of applications such as movie production, computer games and computer aided design. It is also a popular research topic in computer graphics and computer vision. In past decades, researchers have developed a series of editing methods to make the editing process faster, more robust, and more reliable. Traditionally, the deformed shape is determined by the optimal transformation and weights for an energy term. With increasing availability of 3D shapes on the Internet, data-driven methods were proposed to improve the editing results. More recently as the deep neural networks became popular, many deep learning based editing methods have been developed in this field, which is naturally data-driven. We mainly survey recent research works from the geometric viewpoint to those emerging neural deformation techniques and categorize them into organic shape editing methods and man-made model editing methods. Both traditional methods and recent neural network based methods are reviewed

    Self-Reference Deep Adaptive Curve Estimation for Low-Light Image Enhancement

    Full text link
    In this paper, we propose a 2-stage low-light image enhancement method called Self-Reference Deep Adaptive Curve Estimation (Self-DACE). In the first stage, we present an intuitive, lightweight, fast, and unsupervised luminance enhancement algorithm. The algorithm is based on a novel low-light enhancement curve that can be used to locally boost image brightness. We also propose a new loss function with a simplified physical model designed to preserve natural images' color, structure, and fidelity. We use a vanilla CNN to map each pixel through deep Adaptive Adjustment Curves (AAC) while preserving the local image structure. Secondly, we introduce the corresponding denoising scheme to remove the latent noise in the darkness. We approximately model the noise in the dark and deploy a Denoising-Net to estimate and remove the noise after the first stage. Exhaustive qualitative and quantitative analysis shows that our method outperforms existing state-of-the-art algorithms on multiple real-world datasets
    corecore