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We investigate the optical control possibilities of spin-valley qubit carried by single electrons
localized in nanostructures of monolayer TMDs, including small quantum dots formed by lateral
heterojunction and charged impurities. The quantum controls are discussed when the confinement
induces valley hybridization and when the valley hybridization is absent. We show that the bulk
valley and spin optical selection rules can be inherited in different forms in the two scenarios, both of
which allow the definition of spin-valley qubit with desired optical controllability. We also investigate
nuclear spin induced decoherence and quantum control of electron-nuclear spin entanglement via
intervalley terms of the hyperfine interaction. Optically controlled two-qubit operations in a single
quantum dot are discussed.

PACS numbers: 78.67.Hc, 03.67.Lx, 73.61.Le, 71.70.Jp

I. INTRODUCTION

Single spins at semiconductor nanostructures have
been widely explored as information carriers in quan-
tum computing, quantum spintronics and quantum
metrology.1–3 These solid state qubit systems of inter-
est include the spin of single electrons or holes local-
ized at quantum dots or by impurities formed in various
bulk semiconductors such as the III-V compounds, silicon
and diamond, and their heterostructures and nanoscry-
tals. These electron and hole spin qubits have demon-
strated remarkable optical and electrical controllability,
relatively long coherence time at low temperature com-
pared to the unit operation time, and potential integra-
bility with existing semiconductor technologies. Through
the hyperfine interactions with the electron or hole spin
qubits, the lattice nuclear spins also play crucial roles in
these solid state qubit systems, either as additional in-
formation carriers with the advantage of extremely long
storage time, or as a deleterious noise source that need
to be suppressed.

Atomically thin two-dimensional (2D) semiconductors
offer new opportunities for quantum spintronics and spin
based quantum information processing. An electrically
controllable spin qubit system based on 2D materials
was first proposed in graphene, a gapless semiconductor.4

Monolayer group-VIB transition metal dichalcogenides
(TMDs) have recently emerged as a new class of direct
gap 2D semiconductors with appealing optical properties
and rich spin physics, implying their great potentials for
hosting optically controlled spin qubits.5,6 These com-
pounds are of the chemical composition of MX2 (M =
Mo,W; X = S, Se). The monolayer is a X-M-X covalently
bonded hexagonal 2D lattice, with a direct bandgap in
the visible frequency range which is ideal for optoelec-
tronic applications and for the exploration of optical con-
trol of spin.7,8 Single electrons can be confined in quan-
tum dots defined by lateral confinement potentials on an

extended monolayer, e.g. by patterned electrodes, simi-
larly to the quantum dots in III-V heterostructures, and
electrically controlled spin qubit has been proposed.9,10

Alternatively, quantum dot confinement can also be real-
ized by the lateral heterojunctions on a single crystalline
monolayer, but with different metal elements in and out-
side the quantum dot region (c.f. Fig. 1), where the band
offset between the different TMD compounds forms the
potential to confine single electron or hole. Lateral het-
erostructures with MoSe2 islands surrounded byWSe2 on
a crystalline monolayer have been demonstrated very re-
cently using chemical vapor deposition growth, although
the length scale of the island is ∼ µm, still too large for
confining single electron.11 The TMDs monolayers also
host various atomic defects which can localize single elec-
tron or hole as well.12–16 Remarkably, recent experiments
have shown that certain types of defects in monolayer
WSe2 are excellent single photon sources, emitting at an
energy which is a few tens meV below the exciton in
the 2D bulk.17–21 Such behaviors of the TMDs defects
resemble the shallow impurities in conventional semicon-
ductors (e.g. Si donor in III-V compounds) that localize
single electron (or hole) as well as single exciton, implying
the possibility towards optical control of single electron
spin.22

Optically controlled spin qubit is highly appealing in
monolayer TMDs because of the interesting optical prop-
erties of the 2D bulk. The monolayer TMDs have a
unique band structure with the conduction and valence
band edges both at the degenerate K and -K valleys at
the corners of the hexagonal Brillouin zone. The direct-
gap optical transitions have a selection rule: left- (right-)
handed circular polarized photon couples to the inter-
band transitions in the K (-K) valley only.23,24 This valley
dependent optical selection rule has made possible in the
2D bulk the optical pumping of valley polarization,25–27

and optical generation of valley coherence.28 Moreover,
the spin-orbit coupling from the metal atoms gives rise
to a pronounced coupling between the valley pseudospin
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and spin,6,29,30 through which the optical selection rule
becomes a spin dependent one, allowing the optical con-
trol of spin as well. This suggests that the valley pseu-
dospin and spin of a single electron can be a promis-
ing qubit carrier with optical controllabilities, as long as
these bulk properties can be inherited when the electron
is localized in the monolayers.

A major difference in the spin and valley pseudospin
physics expected between the bulk electron and the lo-
calized electron is the intervalley coupling and valley hy-
bridization by the confinement. This issue has been stud-
ied for quantum dot confinement potentials on extended
monolayers,31 where the intervalley coupling is found to
be weak for quantum dot with lateral size larger than 20
nm (∼ meV or orders smaller, depending on the shape
and size of the dot). In such a case, the valley hybridiza-
tion is well quenched by the much stronger spin-valley
coupling, and the quantum dot can well inherit the valley
and spin physics of the 2D bulk. Interestingly, a sensi-
tive dependence of intervalley coupling strength on the
central position of the confinement potentials is discov-
ered. It is found that when the potential has C3 or higher
rotational symmetry, the intervalley coupling completely
vanishes if the potential center is at a chalcogen atom
site or the hollow center of the hexagon formed by metal
and chalcogen atoms, which is due to the dependence of
the eigenvalue of C3 rotation operator on the location of
the rotation center.31,32

In this work, we investigate the optical control possi-
bilities of spin-valley qubit carried by single electrons lo-
calized in nanostructures of monolayer TMDs, including
charged impurities and small quantum dots (with length
scale of 10 nm or smaller). We discuss the quantum con-
trols under two different scenarios: (i) in the presence of
valley hybridization due to the strong confinement and
(ii) in the absence of valley hybridization. The latter sce-
nario is considered for the confinements that has C3 or
higher rotational symmetry about a chalcogen atom site
or the hollow center of the hexagon formed by metal and
chalcogen atoms, or when this symmetry is only weakly
broken so that the residue intervalley coupling can be
well quenched by the spin-valley coupling. We show that
the bulk valley and spin optical selection rules can be
inherited in different forms in the two scenarios, both
of which allow the coherent rotation between electron
states controlled by optical pulses. The hyperfine inter-
action between lattice nuclear spins and the electron or
hole spin is also formulated within the envelop function
approximation, and the nuclear spin induced decoher-
ence of the spin-valley qubit is analyzed. We find that
the short-range nature of the hyperfine interaction gives
rise to intervalley terms, which can be utilized for optical
control of the electron-nuclear spin entanglement.

The rest of the paper is organized as follows. In Sec.
II, we give a brief account of the nanostructures being
considered here for optically controlled spin-valley qubit.
In Sec. III, we discuss the electron states in presence
of valley hybridization expected in strong confinement,

and present the optical selection rules for the quantum
confined states. Coherent rotations between valley hy-
bridized states by optical control will be discussed. In
Sec. IV, we discuss the electron states in the absence of
valley hybridization when the confinement has the afore-
mentioned rotational symmetry. The optical control is
achieved with the help of external magnetic fields. In
Sec. V, we discuss the hyperfine interactions of the con-
fined electrons and holes with lattice nuclear spins in the
envelope function approximation. We propose to opti-
cally control the electron-nuclear spin entanglement via
intervalley terms of the hyperfine interaction. The de-
coherence time of the localized electron spin caused by
interacting with lattice nuclear spins is discussed. In Sec.
VI, we discuss the possibility to realize two-qubit logic
operations between the spin qubit and the valley qubit
carried by a single electron in a quantum dot. Finally,
conclusions are given in Sec. VII. Appendix A uses a
three-band tight-binding model to estimate the interval-
ley coupling strength in the confinement by charged im-
purity and small quantum dot. In Appendix B, we an-
alyze the terms in the electron-nuclear and hole-nuclear
hyperfine interactions based on symmetries of the rel-
evant atomic orbitals, and estimate the bulk hyperfine
constants.

II. CONFINEMENT OF SINGLE ELECTRON IN

THE NANOSTRUCTURES

If the length scale of the confinement potential is still
much larger than the lattice constants, the bound states
are formed predominantly from the band-edge Bloch
states in the K and -K valleys of the 2D bulk. In general,
each eigenstate in the confinement is a hybridization of
Bloch states from the K and -K valleys due to the inter-
valley coupling introduced by the confinement potential,
except when the potential has a C3 rotational symme-
try about either a chalcogen atom site or a hollow center
of the hexagon formed by metal and chalcogen atoms.31

In the absence of valley hybridization, the bound-state
eigenfunctions can be constructed from Bloch states from
the K or -K valley only, denoted as Ψτ,s where τ = ±
is the valley index for the ±K valley, and s =↑ (↓) de-
notes spin up (down) state. This is a convenient basis
for our discussion, even when intervalley coupling and
valley hybridization are present. Intervalley coupling is
then the off-diagonal matrix elements between these basis
states due to the confinement potential. If confinement
potential is spin-independent, intervalley coupling van-
ishes between states with opposite spin index. With the
large quantization energy in the confinement potential
(see Appendix A), we can focus only on the ground states
for each spin and valley index, while the excited states are
far off resonance concerning either the valley hybridiza-
tion effect or the optical control of the spin-valley qubit.
Below we consider two types of confinements.
The first is the lateral heterostructures between differ-
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Figure 1: Schematics of nanostructures of monolayer TMDs for optically controlled spin-valley qubit: (a) small quantum dots
in lateral heterojunction and (b) charged impurity system. In (a), the heterojuction is formed of a MoSe2 island in monolayer
WSe2. An electron is confined in the MoSe2 quantum dot (bottom panel) and is excited to the trion state (top panel). The
schematics of the confinement potential is shown on the left. In (b), the impurity system is formed in monolayer WSe2 when
a W atom is replaced by a Re one. The D0 system is shown at the bottom and D0X is shown at the top.

ent TMDs, for example, a MoSe2 island surrounded by
WSe2 on a crystalline monolayer. With a type-II band
alignment between the two TMDs, such a heterostructure
forms a confinement potential of a vertical wall, which
localizes a single electron in the MoSe2 region with a po-
tential depth of few hundred meV. The valley and spin
degrees of this electron can then define a qubit. In the
optical control, an optical field can couple the states of
the single electron to the optical excited states of trion
(i.e. two electrons plus a hole) through the interband
transition. These trion states are utilized as intermedi-
ate states for the optical control of the single electron
states. Although the heterostructure itself does not form
a confinement for a single hole (c.f. Fig. 1), the quantum
confinement of the electron constituents will nevertheless
localize the trion at the heterostructure.

The intervalley coupling strength grows with the de-
crease in size of the quantum dot. At a lateral size of
5 nm, the coupling matrix element reaches 0.1 − 1 meV
depending on the quantum dot shape. The valley hy-
bridization will then be determined by the competition
of this off-diagonal matrix elements in the basis Ψτ,s,
and the diagonal energy differences between Ψ+,s and
Ψ−,s due to the spin-valley coupling in the band of the
2D bulk. For monolayer MoS2, the spin-valley coupling
strength in the conduction band is 3 meV,33 comparable
to the achievable intervalley coupling in small quantum
dots. For other three TMDs (MoSe2, MoS2 and WSe2),
the spin-valley coupling strength is in the range of 20-40

meV. Valley hybridization for the hole component is al-
ways negligible due to the giant spin-valley coupling of
hundred of meV in all TMDs.

The second type of nanostructure is a neutral donor
system D0, for example a Re replacing a W in the WSe2
monolayer, where the positively charged impurity binds
the extra electron and forms a hydrogenic state. Simi-
larly to the quantum dot case, the single electron states
can be optically coupled to the donor bound excitonD0X
states. In GaAs, D0-D0X system has been extensively
explored for optically controlled single spin.22 Compared
with the quantum dot, the D0-D0X system in monolayer
TMDs is expected to be a much tighter confinement due
to the enhanced Coulomb interaction. Consequently, the
intervalley coupling strength is much stronger (unless the
impurity is centered at a chalcogen atom site or a hol-
low center of the hexagon formed by metal and chalco-
gen atoms). For several examplary electrostatic Coulomb
potential as shown in Appendix A, we find the interval-
ley coupling strength can be comparable to the electron
spin-valley coupling strength in MoSe2, MoS2 and WSe2.
Therefore, the valley hybridization of electron is expected
to be significant in the D0-D0X system.
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Figure 2: Valley and spin dependent optical transition selec-
tion rules at the band edge of the monolayer WX2 (a) and
MoX2 (b). (c) Optical transition selection rules in quan-
tum dots with valley hybridization of the localized single
electron. Solid (dashed) horizontal lines denote spin-up (-
down) states. Dark green (black) color denotes +K (−K)
valley. Red doubled-arrowed lines denote σ−-polarized lights
and blue ones denote σ+-polarized lights, with the transition
strength in dashed one ∝ sin θ

2
(i.e. enabled by a finite inter-

valley coupling, see text), and solid one ∝ cos θ

2
.

III. OPTICAL CONTROL OF ELECTRON

STATES IN PRESENCE OF VALLEY

HYBRIDIZATION

In this section, we consider the scenario where the
confinement potential introduces pronounced valley hy-
bridization of the localized electron. This applies to the
confinement potentials of small length scale which do not
have the C3 rotational symmetry about either a chalco-
gen atom site or a hollow center of the hexagon formed
by metal and chalcogen atoms (see Sec. II and Appendix
A).
We note that valley hybridization is present for elec-

trons only. For holes, the band edges of the 2D bulk are
spin-valley locked because of the giant spin-orbit cou-
pling, i.e. valley K (-K) has spin down (up) holes only.
As the confinement potential does not flip spin, valley hy-
bridization by the confinement is completely quenched for
the spin-valley locked holes. For electrons with a much
smaller spin-valley coupling in the 2D bulk band edges,
we take into account both spin species in each valley,
and the quantum dot Hamiltonian in the aforementioned
basis is,

H0 = hτx +
λ

2
τzsz, (1)

where h is the intervalley coupling strength, τ and s de-
note the pauli matrices operating at valley and real spin
degrees of freedom, and λ is spin-valley coupling of con-
duction band.

Since intervalley coupling conserves spin, we re-write
the Hamiltonian in a compact form,

H0 = ~d · ~τ = d

(

cos θ sin θ
sin θ − cos θ

)

(2)

with ~d = (h, 0, λ
2 s) = d(sin θ, 0, cos θ). The eigenenergies

are ǫ1(2),s = ±sd, with eigenvectors,

|u1, s〉 =
(

cos θ
2

sin θ
2

)

, (3)

|u2, s〉 =
(

sin θ
2

− cos θ
2

)

. (4)

These four spin-valley configurations of the single elec-
tron can be used to construct the qubit.
Our proposed optically controlled qubit operations rely

on the optical selection rules in monolayer TMDs.24 In
2D bulk of monolayer TMDs, the conduction (valence)
band edge states mainly consist of transition metal dz2

(dx2−y2±idxy) orbitals with the magnetic quantum mc =
0 (mv = ±2). At the ±K points, the Bloch states have

C3 rotation symmetry C3 |τ, s〉 = e−i 2mπ
3 |τ, s〉, which im-

plies an azimuthal selection rule for the allowed interband
optical transition (mc−mv∓1 modulo 3)= 0. Because of
inversion symmetry breaking, this optical selection rules
is valley-contrasted. The spin-valley locking of the holes
further makes these selection rules spin-dependent: σ+

circular polarization optical field can generate spin-up
electrons and spin-down holes in valley K, while the ex-
citation in the −K valley is simply the time-reversal of
the above, as shown in Fig. 2 (a) for WX2 systems and
Fig. 2 (b) for MoX2 systems. Since these two kinds of
systems only differed by the sign of spin splitting in the
conduction band33, we illustrate our results with WX2

system in all of the following figures.
In the context of a quantum dot charged with a single

electron, an optical field can couple the different spin-
valley states of the single electron to an charged exci-
ton state (trion) of the various spin-valley configurations.
These transitions have optical polarization selection rules
inherited from the 2D bulk. With the valley hybridiza-
tion of electrons, the optical transitions in fact become
more intricate in the quantum dot. As shown in Fig.
2 (c), there are six bright trion states that can be cou-
pled to the four spin-valley states of the single electron.
The dashed arrows denote the transitions with strength
∝ sin θ

2 (i.e. enabled by a finite intervalley coupling
h), while the solid arrows denote the transitions with
strength ∝ cos θ

2 .
Among all the possible optical transitions, we note that

|u1, ↑〉 and |u2, ↑〉 can both be coupled to the same trion

state |X−, ↑〉 = e†+,↑e
†
−,↑h

†
+,⇓ |G〉 with a σ+ circular po-

larized light. Here e†τ,s creates an electron state with spin

s and valley τ and similarly h†
τ,s′ creates a hole state

with spin s′ =⇑,⇓ with |G〉 denoting an empty conduc-
tion band and full valence band. Therefore |u1, ↑〉, |u2, ↑〉
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Figure 3: Optically controlled rotation between the valley hy-
bridized states via the Raman type processes mediated by the
trion state. There are two Λ-type three-level systems that can
be controlled respectively via the Raman type process by op-
tical pulses with σ+ polarization (a) or σ− polarization (b).
The quantum dot can have four states for encoding infor-
mation that are distinguished by the spin index and can be
selectively accessed using circularly polarized light.

and |X−, ↑〉 form a Λ-type three-level system (c.f. Fig.
3 (a)). Similarly, a σ− circular polarized light couples

|u1, ↓〉 and |u2, ↓〉 with |X−, ↓〉 = e†+,↓e
†
−,↓h

†
−,⇑ |G〉, form-

ing another Λ-type three-level system (c.f. Fig. 3 (b)).
We note that a single quantum dot can now have four
states for encoding information: {|u1, ↑〉, |u2, ↑〉, |u1, ↓〉,
|u2, ↓〉}. σ+ or σ− polarized light makes possible selec-
tive access of this Hilbert space for either initialization,
readout, or quantum control, where optical control sce-
narios utilizing the Λ level scheme can be borrowed from
optically controllable III-V quantum dots.34,35

For example, coherent rotation between the pair of
states {|u1, ↑〉, |u2, ↑〉} (or {|u1, ↓〉, |u2, ↓〉}) can be re-
alized through an optical Raman process via the inter-
mediate trion states |X−, ↑〉 (or |X−, ↓〉) by σ+ (or σ−)
polarized light in the Λ-type three-level system.36 Apply-
ing two phase-locked optical pulses with σ+ polarization,
the light-matter interaction Hamiltonian in the rotating
wave approximation is

HI =
∑

j=1,2

Ωj(t)
∣

∣X−, ↑
〉

〈uj, ↑|+H.c., (5)

where the Rabi frequencies are of the forms Ω1(t) =
E1D0 sin

θ
2e

iω1t−iα1 and Ω2(t) = E2D0 cos
θ
2e

iω2t−iα2

with Ej being the amplitude of the polarized light and
α1 − α2 ≡ α being the relative phase between them.
D0 = 〈uj, ↑|D |X−, ↑〉 is the optical transition matrix el-
ement between the localized electron state and the trion

state, which is approximately proportional to
〈τ,s|D|τ,s′〉

aH
,

where 〈τ, s|D |τ, s′〉 is the optical transition matrix ele-
ment between the bulk conduction and valence states at
τK points and aH is the Bohr radius of the trion state.
Because of the strong Coulomb interaction, D0 is several
times larger than the one in III-V semiconductor quan-
tum dots. The frequencies ωj = Et−∆−ǫj are chosen to
satisfy the Raman conditions with Et and ∆ being the
trion energy and Raman detuning respectively. In the
rotating frame defined by e−iǫ1t |u1, ↑〉, e−iǫ2t |u2, ↑〉 and
e−i(ET−∆)t |X−, ↑〉, the total Hamiltonian H = H0 +HI

is transformed to

H =





0 0 E1D0 sin
θ
2e

−iα

0 0 E2D0 cos
θ
2

E1D0 sin
θ
2e

iα E2D0 cos
θ
2 ∆



 ,

(6)
where the fast oscillating terms ∝ e−2idt have been ne-
glected. For large detuning, the trion state is eliminated
via using the adiabatic approximation. The dynamics of
the qubit is then described by

Heff =
−D2

0

∆

(

E2
1 sin

2 θ
2

E1E2

2 sin θeiα
E1E2

2 sin θe−iα E2
2 cos

2 θ
2

)

(7)

which can be rewritten as

Heff = n0I + ~n · ~ζ, (8)

with

n0 = −D2
0(E

2
1 sin

2 θ
2 + E2

2 cos
2 θ

2 )

2∆
,

nx = −E1E2D
2
0 sin θ cosα

2∆
,

ny =
E1E2D

2
0 sin θ sinα

2∆
,

nz = −D2
0(E

2
1 sin

2 θ
2 − E2

2 cos
2 θ

2 )

2∆
, (9)

where ~ζ operates on our defined qubit, which precedes
under this pseudo-magnetic field ~n.
The effect of intervalley coupling is involved in the an-

gle θ. Without intervalley coupling, θ = 0, ~n only lies
in z direction. Therefore, intervalley coupling plays an
crucial role in the optically controlled single-qubit oper-
ation. In general cases with finite intervalley coupling,
arbitrary pseudo-magnetic field orientation can be ob-
tained by changing the control parameters E1,2, α and
∆. For example, when one of the two pulses is turned off,
i.e. E1 or E2 being set to zero, ~n is in z direction. This

realizes a single-qubit phase-shift gate USφ
=

(

1 0
0 eiφ

)

if we set E1 = 0, where φ =
D2

0
E2

2
cos2 θ

2
t

∆ . On the other

hand, when E2

E1

= tan θ
2 and α = 0, ~n is in the x direction

with nx = −E2

1
D2

0
sin2 θ

2

∆ . The qubit state would be flipped
by an optical pulse with duration tf = π

2|nx| . For square-

shaped MoS2 quantum dot with lateral size of 3 nm, the
intervalley coupling is calculated as 1 meV if the lateral
confinement potential is set as 0.2 eV (see Appendix A).
When a light with E1D0 = 0.5 meV is applied, |nx| ∼ 1
µeV and tf is about 0.8 ns, if we set the detuning ∆ = 5
meV.

IV. ELECTRON STATES IN ABSENCE OF

VALLEY HYBRIDIZATION

If the confinement has C3 symmetry, intervalley cou-
pling vanishes when the confinement center is chosen



6

at the chalcogen atom site or the hollow center of the
hexagon lattice.31,32 In this case, valley is a good quan-
tum number, and the quantum dot states are formed
from the Bloch states in a single valley of the 2D bulk.
The optical transitions of the spin-valley states of the sin-
gle electrons to trions in Fig. 2 (c) then reduces to those
in Fig. 4 (a).
Optical control of the spin states is still possible in the

presence of a magnetic field with an in-plane component,
which can couple the spin up and down states from the
same valley. With external magnetic fields, the Hamilto-
nian for the single electron at each valley becomes

H ′
0 =

λ

2
τzsz +Bxsx +Bzsz = ~d′ · ~s, (10)

where ~d′ = (Bx, 0,
λ
2 τ+Bz) = d′(sin θ′, 0, cos θ′) is the ef-

fective field on the spin doublet at each valley, as plotted
schematically in Fig. 4 (b), which is valley-dependent in
general. The eigenstates of this Hamiltonian are

|u′
1, τ〉 =

(

cos θ′

2

sin θ′

2

)

, (11)

|u′
2, τ〉 =

(

sin θ′

2

− cos θ′

2

)

. (12)

These spin-coupled states can be used to construct the
qubits. In contrast to the scenario in Sec. III in presence
of the valley hybridization, the valley index is now a good
quantum number while the spin is now quantized along
a direction tilted from z. Coherent rotation between the
pair of states {|u′

1,+〉, |u′
2,+〉} (or {|u′

1,−〉, |u′
2,−〉}) can

be realized through an optical Raman process via the
intermediate trion states (c.f. Fig. 5).
In an applied magnetic field with a finite in-plane com-

ponent, there are six bright trion states, as shown in Fig.
5 (a). One can see that the two states |u′

1,+〉 and |u′
2,+〉

are coupled to the trion state |X−,+〉 = e†+,↓e
†
+,↑h

†
+,⇓ |G〉

by a σ+ polarized light. Similarly, |u′
1,−〉 and |u′

2,−〉 are
coupled to the trion state |X−,−〉 = e†−,↑e

†
−,↓h

†
−,⇑ |G〉 by

a σ− polarized light (c.f. Fig. 5 (b) and (c)). By virtual
excitation of these trion states, single qubit operations
including the spin initialization and spin rotations can
be controlled via optical Raman process.35,37 The effec-
tive Rabi frequencies for the qubits are the same as the
ones in Eq. (9) while with θ being replaced by θ′ here.
Bx plays the same role as intervalley coupling h in the

former case discussed in sec. III and its competition with
spin-valley coupling λ determines the operation speed.
For MoS2 with λ being a few meV, Bx can be the same
order of magnitude in a magnetic field of a few Tesla.
For the other three group-VIB TMDs, λ ∼ 20− 40 meV,
which is much larger than Bx in most conditions. The
coupling strength of the optical transition from |u′

1, τ〉
to |X−, τ〉 in the Λ-level scheme is a weak one, propor-
tional to Bx

λ . This will limit the operation speed for the

 

Figure 4: (a) Optical transition selection rules in quantum
dots without valley hybridization, and in absence of magnetic
field. (b) Configurations of effective magnetic fields in the
two valleys. The dark blue, light blue, green and yellow ar-

rows indicate Bz, Bx, λ and total field ~d′ respectively. In
each valley, the eigenstates of the effective magnetic field are
indicated (black spots).

 

Figure 5: (a) Optical transition selection rules in quantum
dots without intervalley coupling while with applied magnetic

fields. The coupling strength in dashed line ∝ sin θ
′

2
and solid

one ∝ cos θ
′

2
. There are two Λ-type three-level systems that

can be controlled respectively via the Raman type process by
optical pulses with σ+ polarization (b) or σ− polarization (c).
The quantum dot can therefore provide four states that are
distinguished by the valley index and can be accessed using
circularly polarized light.

optical control of the states. Note that because of the

difference in the effective field ~d′, the effective Rabi fre-
quency and hence the operation speed differ by a factor
√

B2
x+(λ/2+Bz)2

B2
x+(λ/2−Bz)2

for the two valleys.
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V. INTERPLAY OF LATTICE NUCLEAR SPINS

WITH CONFINED ELECTRON AND HOLE

Electrons and holes localized in semiconductors can
be coupled to the environment consists of phonons and
lattice nuclear spins. At a temperature low for the elec-
trons but high for the nuclear spins (i.e. 10 mK - K),
the effects of phonon can be well suppressed, leaving the
lattice nuclear spins as the ultimate environmental de-
grees of freedom.35 In MX2 nanostructures, the stable
isotopes of the relevant elements with nonzero nuclear
spin include: (95Mo, 5/2, 15.92%), (97Mo, 5/2, 9.55%),
(183W, 1/2, 14.31%), (33S, 3/2, 0.76%) and (77Se, 1/2,
7.63%), where the second number in the bracket gives
the nuclear spin quantum number and the third gives
the natural abundance.38

We derive here the forms of hyperfine interaction be-
tween the localized electron and hole with these lattice
nuclear spins in the envelope function approximation.
This is applicable for the localized electron wavefunction
formed largely from the band edge Bloch functions at the
±K points. These band edge Bloch functions are mainly
contributed from the metal d-orbitals and a small but
finite component of the chalcogen p-orbitals. The hyper-
fine coupling strength with the metal nuclear spins are
therefore stronger. The chalcogen nuclear spins are ex-
pected to play less important roles, for both the weakness
of the hyperfine interaction strength and the smaller nat-
ural abundance of the stable isotopes with finite nuclear
spins.32,38

We find that, similarly to both the electron and hole
hyperfine interactions in III-V semiconductors,39,40 the
hyperfine interaction here is of the short-range nature: it
needs to be counted only for nuclear spins in direct con-
tact with the electron or hole, with a coupling strength
proportional to the electron/hole density at the nuclear
site. As the electron now has the valley pseudospin in
addition to the spin, the hyperfine interaction has in-
travalley terms as well as the intervalley terms. The lat-
ter arises from the short-range nature of the hyperfine
interaction, which makes possible the coupling between
the single electron states from different valleys.

A. Intravalley and intervalley hyperfine interaction

The hyperfine interaction in the quantum dot is for-
mulated by projecting the complete electron nuclear hy-
perfine interaction into the basis of the localized electron
and hole wavefunctions in the envelope function approx-
imation, which are given by,

Ψc(v)
τ,s (~r) = F c(v)(~r)Φc(v)

τ (~r)χs (13)

where Φ
c(v)
τ (~r) = eiτ

~K·~ruc(v)
τ (~r) is the Bloch wave func-

tion at τK point in the conduction (c) and valence (v)

bands with u
c(v)
τ (~r) being its periodic part, F c(v)(~r) is

the localized envelop function and χs is the spin part

of the wavefunction. For electrons, we consider the pro-
jected form of the hyperfine interaction between the basis

states
{

Ψc
+,↑(~r),Ψ

c
+,↓(~r),Ψ

c
−,↑(~r),Ψ

c
−,↓(~r)

}

. For holes,

with the giant spin splitting at the valence band top,
we only need to consider the two-fold spin-valley locked

basis:
{

Ψv
+,↑(~r),Ψ

v
−,↓(~r)

}

.

We have used two approaches to obtain the band edge
Bloch functions. In the first approach, we extract the or-
bital compositions of the band edge Bloch states from
first principle calculations, and then write the Bloch
functions by using the Roothaan-Hartree-Fock atomic
orbitals.41,42 In the second approach, we use the numer-
ically calculated Bloch functions from Abinit.43–45 The
two approaches give consistent results on the form and
magnitude of hyperfine interactions. Details are given in
Appendix B, and the forms are summarized below.

MoS2 MoSe2 WS2 WSe2
̺ 0.23 0.23 0.37 0.40

Ac

M -0.50 -0.51 0.76 0.79
Av

M -1.52 -1.53 1.78 1.82
Ac

X 0.05 0.46 0.08 0.33
Av

X -0.16 -1.33 -0.37 -1.63

Table I: Hyperfine constants evaluated based on Bloch func-
tions constructed using Roothaan-Hartree-Fock atomic or-

bitals (see text). A
c(v)

M(X)
is in unit of µeV and ̺ is dimen-

sionless.

(i) Electron hyperfine interaction with M atom:

Hc
M = Ac

M

∑

k

Ω|F c(~Rk)|2
[

Ikz Sz + ̺(IkxSx + IkySy)
]

×
(

1 + e−2i ~K·~Rkτ+ + e2i
~K·~Rkτ−

)

, (14)

where Ik and ~Rk are the spin operator and position vec-
tor of the k-th nuclei of M atom, τ± are the rasing and
lowing operators for valley index and Ω is the volume of
the unit cell. ̺ denotes the ratio between the transverse
and the longitudinal interactions.
(ii) Hole hyperfine interaction with M atom:

Hv
M = Av

M

∑

k

Ω|F v(~Rk)|2Ikz Sz. (15)

(iii) Electron hyperfine interaction with X atom:

Hc
X = Ac

X

∑

k

Ω|F c(~R′
k)|2[I ′kz Sz +

1

8
(I ′kx Sx + I ′ky Sy)

+
3

8
(e−2i ~K·~R′

kτ+I
′k
−S− +H.c.)], (16)

where I ′k and ~R′
k are the spin operator and position

vector of the k-th nuclei of X atom and we have used
the associated rasing and lowing operators for nuclei and
electron spins.
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(iv) Hole hyperfine interaction with X atom:

Hv
X = Av

X

∑

k

Ω|F v(~R′
k)|2[I ′kz Sz −

1

4
(e−2i ~K·~R′

kτ+I
′k
+ S+

+H.c.)]. (17)

All of the hyperfine constants A
c(v)
M(X) in different MX2

are listed in Table I.
From the above results, one can find that the hyperfine

interaction related to the M nuclei is much stronger then
the one to the X nuclei. More importantly, the hyperfine
interaction may contain both intravalley and intervalley
terms.

B. Optical control of electron-nuclear spin

entanglement

The intervalley part in the hyperfine interaction sug-
gests a possibility for optical control of the electron-
nuclear spin entanglement. The hyperfine interaction be-
tween the confined electron and M nucleus is

HHF = Ac
MΩ|F c(0)|2

[

IzSz +
̺

2
(I+S− + I−S+)

]

× (1 + τ+ + τ−) . (18)

where we have assumed that the M nuclei is located at po-

sition ~R0 = 0, where the hyperfine interaction is strong.
The term ∝ IzSz shift upwards (downwards) the energy
levels with hl =

1
4A

c
MΩ|F c(0)|2when electron and nuclear

spins point in the same (opposite) direction. The term ∝
[I+S−(τ+ + τ−)+H.c.] couples the different valley states
where electron and nuclear spins point in the opposite
direction, which can be rewritten as

H1 = htσx, (19)

where ht = Ac
MΩ|F (0)|2 ̺

2 and σ denotes the Pauli ma-
trices defined in the two-dimensional space spanned by
{|+, ↑〉e |↓〉n, |−, ↓〉e |↑〉n} or {|+, ↓〉e |↑〉n, |−, ↑〉e |↓〉n}
with the subscript e and n denoting electron and nuclear
states respectively. The other terms can be neglected,
because they couple those states separated by the spin-
valley coupling, which is much larger compared to the
hyperfine interaction. The magnitude of ht ∝ 1

N , where

N = S
Ω is the number of unit cell in the quantum dots of

area S. For a 183W nuclei in triangular-shape WS2 quan-
tum dots with N = 100, we estimate ht ∼ 0.0036µeV.
The eigenstates of Eq. (19), |v1,2〉 = 1√

2
(|+, ↑〉e |↓〉n ±

|−, ↓〉e |↑〉n) or |v3,4〉 = 1√
2
(|+, ↓〉e |↑〉n ± |−, ↑〉e |↓〉n),

which are electron-nuclear entangled states. These en-
tangled states contain electron spin state from both val-
leys and can be connected via certain intervalley trion
state, as shown in Fig. 6 (a). For example, |v1,2〉
can be coupled with equal strength to the trion state
∣

∣X−
1

〉

= e†−,↓e
†
+,↑h

†
−,⇑ |G〉 |↓〉n by a σ− polarized light or

∣

∣X−
2

〉

= e†−,↓e
†
+,↑h

†
+,⇓ |G〉 |↑〉n by a σ+ polarized light.

Optical Raman processes using these trion states realize
an optical quantum pathway to control these electron-
nuclear entangled states. However, we note that, because
the energy splitting (2ht) between |v1〉 and |v2〉 is typi-
cally less then 1µeV, the oscillating terms ∝ e−i2htt are
slow ones and can not be neglected in this case as we
did in Eq. (6). To realize a coherent rotation of the two
level system spanned by |v1〉 and |v2〉, we use a single
optical pulse to couple both states to the trion state,35,46

as shown in Fig. 6 (b) and (c). Applying an optical
pulse with σ+ polarization to virtually excite the trion
state

∣

∣X−
2

〉

, the dynamics is governed by the following
Hamiltonian,

H ′ = htσx−∆
∣

∣X−
2

〉 〈

X−
2

∣

∣−[Ω(t) |−, ↓〉e |↑〉n
〈

X−
2

∣

∣+H.c.],

where Ω(t) is the Rabi frequency in the rotating frame
and ∆ is the detuning of the laser relative to

∣

∣X−
2

〉

. For
large detuning, we can use the adiabatic approximation
to eliminate the trion state. The dynamics is described
by

H ′
eff =

|Ω|2
2∆

(

1 eihtt

e−ihtt 1

)

= ǫ0I + ~n(t) · ~σ, (20)

describing the qubit state precessing under a time-
dependent magnetic field ~n(t) with the strength Ω2/(2∆)
rotating in the x-y plane with the angular frequency ht.
Because ht is typically less then 1 µeV and Ω2/(2∆)
is several hundreds of µeV, the optical pulse in the pi-
cosecond scale can be regarded as an instantaneous one.
To complete an arbitrary rotation, two subsequent ro-
tations along x- and y-directions, which constitute two
SU(2) generators, are needed. Explicitly, at t = 2nπ

ht

(n is an integer), ~n(t) is in the x-direction. Whereas

at t = (2n+1/2)π
ht

, ~n(t) is in the y-direction. For a
183W nuclei in triangular-shape WS2 quantum dots with
N = 100, the shortest time interval for these two subse-
quent operations is 287 ns. Because ht ∝ 1

N , this oper-
ation time can be shortened by using smaller quantum
dots.

We note that the possibility to control the coherent
rotation in the subspace spanned by |+, ↑〉e |↓〉n and
|−, ↓〉e |↑〉n, combined with the RF control that flips the
nuclear state, can potentially realize the intervalley ro-
tation in the electron subspace spanned by |+, ↑〉e and
|−, ↓〉e. We also note that, in our scheme, a single nuclei
with state |s〉n is used to couple electron states of differ-
ent valleys. The interaction strength ht ∝ 1

N . Alterna-
tively, if a connection of nuclei with a fully polarized ini-
tial state |↓, ↓, ↓ · · ·〉n are used, the interaction strength

∝
√
ν√
N
, so that the operation speed can be increased by√

νN time, where ν is the abundance of M nuclei. In this
case, the electron-nuclear entangled states are

∣

∣v′1,2
〉

=
1√
2
(|+, ↑〉e |↓, ↓, ↓ · · ·〉n ± |−, ↓〉e

∑

k ck |↓, ↓, ↑k · · ·〉n).
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Figure 6: (a) Optical and hyperfine couplings between the
electron states in presence of a nuclear spin. The brown ar-
rows denote the nuclear spin state, e.g. from a 183W nuclei.
The Λ-type three-level systems formed by the electron-nuclear
entangled states and trion states are connected via an optical
pulse with σ+ polarization (b) or σ− polarization (c).

C. Nuclear spin induced decoherence

The interaction with lattice nuclear spins causes the
decoherence of localized electron spin.47–52 Because the
hyperfine interaction with the M nuclei is much stronger
than the one with the X nuclei, we consider the decoher-
ence effect arising from interaction with the former one.
From Eq. (18), we know that there are four decoherence
channels in the basis of {|+, ↑〉 , |−, ↓〉 , |+, ↓〉 , |−, ↑〉}.
The first one arises from the term ∝ Ikz Sz , which causes
dephasing between electron states with different spin.
The second one arises from the term ∝ [Ik+S−(τ++τ−)+
H.c.], which causes relaxation between electron states
with different spin and valley. The third one arises from
the term ∝ [Ikz Sz(τ+ + τ−) + H.c.], which causes relax-
ation between electron states with different valley while
the same spin. The last one arises from the term ∝
(Ik+S− +H.c.), which causes relaxation between electron
states with different spin in each valley. The last two
relaxation channels are much weaker compared with the
former two, because the hyperfine interaction is small
compared to the spin-valley coupling so that the energy
cost associated with the transitions (a few to a few tens
meV) is much larger than the hyperfine induced transi-
tion matrix element. So relaxation between the initial
and final states are suppressed by the large energy cost.
Therefore, in the following, we make an estimation of the
decoherence time arising from the first two channels.
For the dephasing between electron states with differ-

ent spin induced by the term ∝ Ikz Sz , the effective nu-
clear field experienced by the localized electron in each

single valley is heff = Ac
M

∑

k Ω|F c
Q(

~Rk)|2Ikz . The statis-
tical fluctuation in the nuclear spin configurations there-
fore corresponds to an uncertainty in the energy differ-

ence between the electron states with opposite spins, and
hence results in pure (inhomogeneous) dephasing. We
assume that there is no correlation between different nu-
clear spins and that the nuclear spins are distributed uni-
formly within the quantum dot, the variance of the field
is

〈

h2
eff

〉

= (Ac
M )

2
∑

k

νΩ2|F c
Q(~Rk)|4

〈

Ik2z
〉

, (21)

where 〈· · · 〉 denotes the average over nuclear spin states.
The coherence time for electron state is T ∗

2 ∼ 2π√
〈h2

eff
〉 .

The intervalley electron-nuclear flip-flop term ∝
[Ik+S−(τ+ + τ−) + H.c.] causes the population relaxation
between the degenerate electron states |+, ↑> and |−, ↓>
and between |+, ↓> and |−, ↑>. The relaxation time for

this process is T1 ∼ 2π
√

〈h′2

eff〉
,47 where

〈

h′2
eff

〉

is the vari-

ance of the in-plane nuclear field,

〈

h′2
eff

〉

= ̺2 (Ac
M )

2
∑

k

νΩ2|F c
Q(

~Rk)|4
〈

(Ik2x + Ik2y )
〉

.

(22)

N 100 500 1000

MoS2

ν 25.5% 100% 25.5% 100% 25.5% 100%
T1(ns) 298 150 668 337 944 477
T ∗

2 (ns) 97 49 217 110 307 155

WS2

ν 14.3% 100% 14.3% 100% 14.3% 100%
T1(ns) 557 210 1246 471 1762 666
T ∗

2 (ns) 292 110 652 246 922 349

Table II: Decoherence time in MoS2 and WS2 quantum dots
with different numbers of nuclear spin. ν = 25.5% (14.3%)
corresponds to the natural abundance in MoS2 (WS2), and
ν = 100% corresponds to the case that each metal atom
within the quantum dot has a nuclear spin.

For an infinite-temperature state, we have
〈

Ik2x,y,z
〉

=

Ik(Ik + 1)/3. Since
∑

k Ω
2|F c

Q(
~Rk)|4 ∼ 1

N , the decoher-

ence time increases with the increase of
√
N . In Table

II, we list T ∗
2 and T1 for quantum dots with different size

(represented by N) and the abundance of the nuclear
spins. The decoherence time is several hundreds of ns,
which is serval orders larger then the operation time in
the optical quantum control of spin-valley qubit.

VI. OPTICALLY CONTROLLED TWO-QUBIT

OPERATIONS IN A SINGLE QUANTUM DOT

With the extra valley degree of freedom in TMDs, a
single electron in the ground state of the QD confinement
has four spin-valley configurations that one can exploit
to encode two qubits. Here we discuss the possibility of
utilizing both qubits in a single dot and realizing two-
qubit logic controls.
We consider first the logic operations in the presence

of valley hybridization, but in the absence of in-plane
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Figure 7: Optically controlled two-qubit operations between
the spin qubit and valley qubit carried by a single electron
in a quantum dot. (a) Definition of the two-qubit states.
The trion states with higher energy (highlighted in red and
blue background) are used as intermediate states for optical
control in two-qubit operations. (b) Energy level scheme for
realizing controlled phase gate and controlled NOT gate in
the presence of valley hybridization. (c) Energy level scheme
for realizing SWAP gate in the presence of valley hybridiza-
tion and applied magnetic fields. The unwanted transitions
(dashed doubled-arrowed lines) are detuned from the two-
photon resonant condition by 2Bz and suppressed.

magnetic field. We define the computational basis as
|mn〉 = |m〉s ⊗ |n〉v where m,n = {1, 0}, and the sub-
scripts s and v denote spin and valley degrees of freedom.
Explicitly, |11〉 = |u1, ↑〉, |10〉 = |u2, ↑〉, |01〉 = |u1, ↓〉,
and |00〉 = |u2, ↓〉 (see Fig. 7 (a)). Under this defi-
nition, the two qubits do not have interaction at rest.
The optical control for two-qubit operations uses the two

trion states e†−,↓e
†
+,↑h

†
−,⇑ |G〉 and e†−,↓e

†
+,↑h

†
+,⇓ |G〉 which

have energies higher than the other trion states by the
conduction band spin-orbit splitting λ. As highlighted
in Fig. 7 (a), these two trion states couple to the four
states of the two qubits by light of different circular po-
larizations. These two trion states then can be used as
the intermediate states in our control scheme, where the
lower energy trion states can be neglected with λ in the
range of a few meV to a few tens of meV32,33 (c.f. Fig.
7 (b) and (c)). Via virtually exciting these trion states
with different circularly polarized lights, one can obtain
the controlled two-qubit gates. For example, applying a
single pulse of σ+ light (Ω1 = 0), only the state |00〉 will
pick up a phaseshift due to the AC-stark shift (Fig. 7
(b)), so we have a controlled phase-shift gate

UPφ
=







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ






. (23)

One can also use two σ+ polarized pulses to selectively

couple the |00〉 and |01〉 states via a Raman-type process
(c.f. Fig. 7 (b)). By controlling the amplitudes and
phases of the two pulses so that the pseudomagnetic field
~n defined in Eq. (9) is in the x direction, a controlled
NOT gate can be realized

UN =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0






. (24)

For MoS2 quantum dot with an intervalley coupling
strength of 1 meV (see Appendix A), if we set the detun-
ing ∆ = 0.3 meV and E1D0 = 0.05 meV, this two-qubit
gate can be realized in ∼ 5 ns.
To realize a SWAP gate, we consider nanostructures

with valley hybridization and in applied external mag-
netic field. In this scenario, the electron eigenstates are
both spin and valley hybridized, which are used as the
basis states for the qubits,

|11〉 = (cos θ |+〉+ sin θ |−〉)(cos θ′ |↑〉+ sin θ′ |↓〉),
|00〉 = (cos θ |+〉+ sin θ |−〉)(sin θ′ |↑〉 − cos θ′ |↓〉),
|01〉 = (sin θ |+〉 − cos θ |−〉)(sin θ′ |↑〉 − cos θ′ |↓〉),
|10〉 = (sin θ |+〉 − cos θ |−〉)(cos θ′ |↑〉+ sin θ′ |↓〉).

In this definition, the two qubits do not have interaction
at rest. Each of these states is now optically coupled

to the trion states e†−,↓e
†
+,↑h

†
−,⇑ |G〉 and e†−,↓e

†
+,↑h

†
+,⇓ |G〉

(c.f. Fig. 7 (c)). For example, applying σ+ polar-
ized lights, these states can couple to the trion state

e†−,↓e
†
+,↑h

†
+,⇓ |G〉 with strengths ∝ sin θ sin θ′, sin θ cos θ′,

cos θ cos θ′ and cos θ sin θ′ respectively. In order to se-
lectively control these states, we apply a magnetic field
in z direction to make the unwanted optical transi-
tions detuned from the two-photon resonant condition
by the Zeeman splitting 2Bz and suppressed, as shown
in Fig. 7 (c). Via virtually exciting the trion state

e†−,↓e
†
+,↑h

†
+,⇓ |G〉 with σ+ light, one can realize coherent

rotations selectively between |01〉 and |10〉 to realize a
SWAP gate,

UW =







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1






. (25)

For MoS2 quantum dot with an intervalley coupling
strength of 1 meV (see Appendix A) and applied mag-
netic fields Bx=Bz=1 meV, if we set the detuning ∆ =
0.3 meV and E1D0 = 0.05 meV, the SWAP gate can be
realized in ∼ 2 ns.

VII. DISCUSSION AND CONCLUSIONS

In conclusion, we have studied the optical controlla-
bility of the spin-valley qubit carried by single electrons
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localized in nanostructures of monolayer TMDs, includ-
ing small quantum dots and charged impurities. Various
control scenarios with and without valley hybridization
caused by the quantum confinement are considered. For
nanostructures with finite intervalley coupling, the low-
energy states are valley-hybridized with definite spin in-
dex. Because of valley hybridization, the electron states
with the same spin index can be coupled to a common
trion state by lights of the same polarization, which
makes possible the arbitrary coherent rotation via Ra-
man processes. And states with different spin index can
be selectively accessed by light of different circular po-
larization. Without intervalley coupling, which is the
case when the confinements have C3 or higher rotational
symmetry about a chalcogen atom site or the hollow cen-
ter of the hexagon lattice, we use a magnetic field with
an in-plane component to hybridize the spin states in
each valley. The low-energy states in this case are spin-
hybridized with a definite valley index and can also be
selectively accessed by light of different circular polariza-
tion. For a single electron confined in the nanostructure,
its four spin-valley configurations can encode two qubits,
where two-qubit logic operations such as the controlled
NOT gate, controlled phase gate, and SWAP gate can be
realized in the presence of the valley hybridization.

We also studied the effect of interaction with lattices
nuclear spins on the localized electrons and holes in the
nanostructures. The hyperfine interaction has interval-
ley terms besides intravalley ones, because of its short-
range nature. Based on this, we studied the possibility
to optically control the electron-nuclear spin entangle-
ment. Some decoherence channels induced by the statis-
tical fluctuations of the nuclear spin configurations are
discussed.

Controlled interplay between electrons localized in ad-
jacent nanostructures may be realized using schemes de-
veloped for coupling III-V quantum dots, e.g. by apply-
ing an electrical gate to tune the tunneling amplitude
between two dots53 or virtually exciting the delocalized
exciton to interact with the electrons in both dots54. The
generalization and quantitative analysis of these schemes
in TMDs nanostructures will be interesting topics for fu-
ture studies.

We also note that the breaking of mirror symmetry
about the metal atom plane can give rise to Rashba-type
spin-orbit coupling which, together with phonon scatter-
ing, can be an important cause for the relaxation of spin-
valley qubit.10 This can be the case for quantum dots
defined by patterned electrodes10 or charged impurity at
a chalcogen atom site. The detailed investigation of the
mechanisms and timescales for the relaxation and deco-
herence of spin-valley qubit in systems with or without
mirror symmetry is also an interesting topic for future
study.
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Appendix A: Intervalley coupling strength in the

confinement by small quantum dots and charged

impurity

We use the real-space tight-binding (RSTB) method
to calculate the intervalley coupling strength in different
types of quantum dots as well as the charged impurity
systems. The validity of this RSTBmethod in calculating
the intervalley coupling has been tested by comparing
it with an entirely different approach, i.e. the envelope
function method as discussed in Ref.31. We calculate
the strength of intervalley coupling in the quantum dots
and impurity systems with supercells and using periodic
boundary conditions.
To calculate the strength of intervalley coupling in

small quantum dots, we take monolayer MoS2 system
with lateral confinement as an example. We consider
three different types of confinement potential, i.e. the
triangular-shape, hexagonal-shape and square-shape po-
tentials. The center of the confinement potential is set
at the Mo site to maximize the intervalley coupling (c.f.
Fig. 8). The results are plotted in Fig. 9. Under an
external confinement of 0.2eV , the intervalley coupling
is on the scale of meV in small quantum dots (several
lattice length scale). With the increase of the potential
radius R, the intervalley coupling decreases. In trian-
gular and hexagonal quantum dots, the intervalley cou-
pling decreases very fast to µeV order and even lower
when R increases. However in square quantum dots with
the same R the coupling strength is still very large. We
also calculate the energy separation between the ground
state and the first excited state in the quantum dots. We
find that the energy separation also decreases with the
increase of R. For all three types of quantum dots with
R = 7 ∼ 30a, with a being the lattice constant, the en-
ergy separation is about 10 ∼ 90meV , which convinces
us that the excite-state levels are well separated from the
ground-state level.

Uon(eV ) -0.5 -1.0 -1.0 -1.0
ǫr 16 16 7 27

h(meV ) 2 14 4 10
Es(meV ) 49 49 169 19

Table III: Intervalley coupling strength h and the energy sep-
aration between the first excited state and ground state Es in
WSe2 impurity system for different parameters including the
on-site confinement Uon and relative dielectric constant ǫr.



12

 

Figure 8: Schematics of quantum dot confinement potential
with triangular (a), hexagonal (b), and square (c) shapes.
The red spots denote quantum dot regime and the potentials
are all centered at M atoms. R is the potential radius.

 

Figure 9: Intervalley coupling strength h and the energy sep-
aration Es between the first excited state and ground state
as functions of R in MoS2 quantum dots of triangular (a),
hexagonal (b) and square (c) shapes. We set the confinement
potential to be 0.2 eV and take the length unit as the lattice
constant a = 3.193Å.

To calculate the strength of intervalley coupling in
charged impurity systems, we consider the example of
monolayer WSe2 with one W atom replaced by a Re one,

using the 2D hydrogenic confinement potential − e2

4πǫrǫ0r
,

where r is the distance from the impurity center, and ǫr
is the relative dielectric constant. The known corrections
to the Coulomb potential, and the possible break down
of the effective mass approximation for the donor sys-
tem will make the quantitative numbers here inaccurate.
However, we want to give some estimation of the order
of magnitude of the intervalley coupling strength for the
strongly localized electron. We use the estimated exciton
binding energy to describe the on-site confinement Uon

at the impurity cite, i.e. about −1.0 ∼ −0.5eV . The
calculated intervalley coupling strength h and the energy
separation between first excited state and ground state
Es are listed in table III. From the results, one can see
that the first excited state are well separated from the
ground state and can be safely neglected.

Appendix B: Derivation of hyperfine interaction

The complete form of the hyperfine interaction be-
tween the electron and nuclear spins is

Hhf = −µ0γe
4π

∑

k

γkIk · [L
r3k

− r2kS − 3rk(S · rk)
r5k

+
8π

3
Sδ(rk)], (B1)

where µ0 is the vacuum permeability, γe and γk are the
gyromagnetic ratios of electron and nuclei, rk = r−Rk is
the electron coordinate measured from the k-th nucleus
and S and L are the spin and angular momentums of the
electron respectively.
As one may directly infer from Eq. (B1), in order to get

reduced form of the hyperfine interaction for the localized
electron and hole in the envelope function approximation,
it is important to study several integrals concerning rk

for the band edge Bloch functions. Because there are two

species of nuclei in the system, we use ~Rk to denote the

position of Mo nuclei and ~R′
k for S nuclei (accordingly

we have ~rk = ~r − ~Rk and ~r′k = ~r − ~R′
k). We have used

two approaches to give the band edge Bloch functions. In
the first approach, we extract the orbital compositions of
the band edge Bloch states from first-principles calcula-
tions, and then write the Bloch functions by using the
Roothaan-Hartree-Fock atomic orbitals (Appendix B1).
In the second approach, we use the numerically calcu-
lated Bloch functions from Abinit (Appendix B2). The
two approaches give consistent results on the form and
magnitude of hyperfine interactions (Eq. (14-17) in main
text), which are also consistent with the symmetry anal-
ysis presented in Appendix B4. We take MoS2 as an
example and list the numerical results from the two ap-
proaches below.

1. Evaluation based on Bloch functions constructed

using Roothaan-Hartree-Fock atomic orbitals

Mo-5s Mo-4d0 Mo-4d+2 Mo-4d−2 S-3p+1 S-3p−1

c(+K) 4.7% 87.6% 0 0 7.7% 0
c(-K) 4.7% 87.6% 0 0 0 7.7%
v(+K) 0 0 84.3% 0 0 15.7%
v(-K) 0 0 0 84.3% 15.7% 0

Table IV: Orbital compositions of the Bloch states in con-
duction and valence bands for ±K valleys from first principle
calculations32 .

The Roothaan-Hartree-Fock method gives analytic
wave functions for the various orbitals of neutral atoms.
Together with the first-principles calculated orbital com-
positions of both conduction and valence band edge
states, as listed in Table IV, we are able to give an analyt-
ical expression for the band edge Bloch functions for the
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evaluation of the hyperfine interaction, assuming that the
atomic orbitals in the crystal has not changed too signif-
icantly from that in the neutral atoms. Similar approach
has been used for the evaluation of hyperfine interaction
of holes in III-V semiconductors39. In the Roothaan-
Hartree-Fock method, Slater-type orbitals55 are linearly
combined to form the atomic orbitals. The radial part of
the Slater-type orbitals is

f(r) = Nsr
n−1e−ζr, (B2)

where Ns is a normalization constant and n is the prin-
cipal quantum number. According to Table IV, we focus
on three atomic orbitals, Mo-5s, Mo-4d and S-3p. The
optimized atomic orbitals for neutral Mo and S atoms
are listed in Appendix B 5. Based on these results, we
write the Bloch functions for the conduction and valence
band at +K valley as

φc
+(~r) =

∑

~Rk

ei
~K·~Rk

[

αc
sf5s(rk)Y

0
0 (θk, ϕk) + αc

df4d(rk)Y
0
2 (θk, ϕk)

]

+
∑

~R′

k

ei
~K·~R′

k
αc
p√
2
f3p(r

′
k)Y

+1
1 (θ′k, ϕ

′
k),

φv
+(~r) =

∑

~Rk

ei
~K·~Rkαv

df4d(rk)Y
+2
2 (θk, ϕk) +

∑

~R′

k

ei
~K·~R′

k
αv
p√
2
f3p(r

′
k)Y

−1
1 (θ′k, ϕ

′
k),

(B3)

where α2 is the orbital composition as listed in Table
IV, f3p, f4d, andf5s are the radial parts of the atomic

orbitals (see Appendix B 5), Y 0
0 , Y 0

2 and Y +1
1 are the

corresponding spherical harmonics. There is a factor 1√
2

before the S-3p orbital part because we have 2 S atoms
with mirror symmetry in one unit cell. For the −K val-
ley, we have φc

−(~r) = [φc
+(~r)]

∗ and φv
−(~r) = [φv

+(~r)]
∗. In

this way, we give an estimation of the Bloch wave func-

tion Ψ
c(v)
τ (~r) = φ

c(v)
τ (~r). Then we can calculate those

integrals for the terms involving rk (r′k) in the Hamil-
tonian (B1), and the results are listed in Table V and
VI. These integrals then lead to the expressions of the
hyperfine interaction in Eqs. (14-17). In the evaluations
of those integrals, we find that only the on-site atomic
orbitals have significant contributions to the hyperfine

interaction. Namely,

〈+| 1
r3k

|+〉c =
∫

V

d~r[φc
+(~r)]

∗ 1

r3k
φc
+(~r), (B4)

where V can be just taken as the unit cell centered at
rk = 0 (c.f. Fig. 10). The corrections from nearest
neighbor and next nearest neighbor unit cells are found
to be negligible. The same is true for other integrals pre-
sented in Table V and Table VI. Therefore, although the
hyperfine interaction is dominated by the dipolar part for
the p and d orbitals, it is still of an “on-site” or “con-
tact” form. This is similar to the case of the hyperfine
interaction for holes in III-V semiconductors as shown in
Refs.39 and40.

〈+| 1
r3
k

|+〉c 〈+|
r
2

kz

r5
k

|+〉c 〈+|
r
2

kx

r5
k

|+〉c 〈+|
r
2

ky

r5
k

|+〉c 〈+|
rkxrky

r5
k

|+〉c 〈+| rkxrkz

r5
k

|+〉c 〈+|
rkyrkz

r5
k

|+〉c

Abinit 24.23 11.68 6.28 6.27 0.01 0.00 0.00
RHF 20.60 10.79 4.90 4.90 0.00 0.00 0.00

|〈+| 1
r
3

k

|−〉c| |〈+|
r
2

kz

r
5

k

|−〉c| |〈+|
r
2

kx

r
5

k

|−〉c| |〈+|
r
2

ky

r
5

k

|−〉c| |〈+|
rkxrky

r
5

k

|−〉c| |〈+| rkxrkz

r
5

k

|−〉c| |〈+|
rkyrkz

r
5

k

|−〉c|

Abinit 24.18 11.68 6.25 6.25 0.00 0.00 0.00
RHF 20.60 10.79 4.90 4.90 0.00 0.00 0.00

〈+| 1
r3
k

|+〉v 〈+|
r
2

kz

r5
k

|+〉v 〈+|
r
2

kx

r5
k

|+〉v 〈+|
r
2

ky

r5
k

|+〉v 〈+|
rkxrky

r5
k

|+〉v 〈+| rkxrkz

r5
k

|+〉v 〈+|
rkyrkz

r5
k

|+〉v

Abinit 19.06 2.88 8.10 8.08 0.02 0.00 0.00
RHF 19.82 2.83 8.50 8.50 0.00 0.00 0.00

|〈+| 1
r3
k

|−〉v| |〈+|
r
2

kz

r5
k

|−〉v| |〈+|
r
2

kx

r5
k

|−〉v| |〈+|
r
2

ky

r5
k

|−〉v| |〈+|
rkxrky

r5
k

|−〉v| |〈+| rkxrkz

r5
k

|−〉v| |〈+|
rkyrkz

r5
k

|−〉v|

Abinit 0.04 0.00 0.10 0.08 0.10 0.00 0.00
RHF 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table V: Intravalley and intervalley integrals for the Mo nucleus regime. Abinit means the results are from the Abinit wave
function, and RHF means the Roothaan-Hartree-Fock wave function. The unit used here is Å−3.
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〈+| 1
r′3
k

|+〉c 〈+|
r
′2

kz

r′5
k

|+〉c 〈+|
r
′2

kx

r′5
k

|+〉c 〈+|
r
′2

ky

r′5
k

|+〉c 〈+|
r
′

kxr
′

ky

r′5
k

|+〉c 〈+|
r
′

kxr
′

kz

r′5
k

|+〉c 〈+|
r
′

kyr
′

kz

r′5
k

|+〉c

Abinit 2.26 0.46 0.91 0.89 0.01 -0.01 -0.01
RHF 1.26 0.25 0.50 0.50 0.00 0.00 0.00

|〈+| 1
r
′3

k

|−〉c| |〈+|
r
′2

kz

r
′5

k

|−〉c| |〈+|
r
′2

kx

r
′5

k

|−〉c| |〈+|
r
′2

ky

r
′5

k

|−〉c| |〈+|
r
′

kxr
′

ky

r
′5

k

|−〉c| |〈+|
r
′

kxr
′

kz

r
′5

k

|−〉c| |〈+|
r
′

kyr
′

kz

r
′5

k

|−〉c|

Abinit 0.00 0.01 0.45 0.44 0.45 0.01 0.01
RHF 0.00 0.00 0.25 0.25 0.25 0.00 0.00

〈+| 1
r′3
k

|+〉v 〈+|
r
′2

kz

r′5
k

|+〉v 〈+|
r
′2

kx

r′5
k

|+〉v 〈+|
r
′2

ky

r′5
k

|+〉v 〈+|
r
′

kxr
′

ky

r′5
k

|+〉v 〈+|
r
′

kxr
′

kz

r′5
k

|+〉v 〈+|
r
′

kyr
′

kz

r′5
k

|+〉v

Abinit 4.14 0.79 1.68 1.67 0.00 0.00 0.00
RHF 2.57 0.51 1.03 1.03 0.00 0.00 0.00

|〈+| 1
r′3
k

|−〉v| |〈+|
r
′2

kz

r′5
k

|−〉v| |〈+|
r
′2

kx

r′5
k

|−〉v| |〈+|
r
′2

ky

r′5
k

|−〉v| |〈+|
r
′

kxr
′

ky

r′5
k

|−〉v| |〈+|
r
′

kxr
′

kz

r′5
k

|−〉v| |〈+|
r
′

kyr
′

kz

r′5
k

|−〉v|

Abinit 0.00 0.00 0.82 0.83 0.83 0.00 0.00
RHF 0.00 0.00 0.51 0.51 0.51 0.00 0.00

Table VI: Intravalley and intervalley integrals for the S nucleus regime. The index and unit are the same as Table V.

2. Evaluation based on first principle calculated

Bloch functions using Abinit

We also numerically evaluated the integrals in the
hyperfine interaction (B1) using the Abinit all elec-
tron (AE) wave function. The results are also given
in Tables V and VI. In deriving the AE wave func-
tion, we choose a three dimensional (3D) unit cell.
The unit cell is like what we choose in Appendix A,
but here all the lattice vectors are expended to 3D

space, that is, ~a1 = (3.193, 0, 0),~a2 = (3.1932 , 3.193
√
3

2 , 0),
and ~a3 = (0, 0, 18.804). The Mo atom is located at

(3.1932 , 3.193
√
3

6 , 1.567), while the two S atoms are at

(0, 0, 0) and (0, 0, 3.134). The unit is Å. Abinit gives us
the periodic part of the Bloch states on 120× 120× 720
discrete points which cover this 3D unit cell.

From Table V and VI, we clearly see that the results
from the numerical Abinit calculation agree well with the
ones in Appendix B1 using the Roothaan-Hartree-Fock
wavefunctions for the atomic orbitals.

3. Corrections beyond the on-site contribution

Using the Abinit AE wave function, we examine here
the corrections beyond the on-site contribution to the hy-
perfine interaction. Here we list some numerical results
in calculating the integrals by involving more neighbor-
ing unit cells in Table VII. One can see that for the inte-
grals related to Mo nuclei the correction from all nearest
neighbor unit cells (c.f. Fig. 10) is about 0.1%, and the
next nearest neighbors’ correction is even smaller. We
check all non-vanishing integrals and find the correction
is of the same order. Therefore, we conclude that the
hyperfine interaction between electron and Mo nuclear
spins are well counted within an on-site unit cell. For
the integrals related to S nuclei, the nearest neighbors’
correction can be 10%, and the next nearest neighbors’

correction is about 1%. This does not affect very much
the magnitude of the hyperfine interaction we estimated.

Integrals for Mo 〈+|
r
2

kz

r5
k

|+〉c 〈+|
r
2

kx

r5
k

|+〉c 〈+|
r
2

ky

r5
k

|+〉c

n.n. 0.0133 0.1070 0.1195
n.n.n. 0.0007 0.0193 0.0185

Integrals for S 〈+|
r
′2

kz

r′5
k

|+〉c 〈+|
r
′2

kx

r′5
k

|+〉c 〈+|
r
′2

ky

r′5
k

|+〉c

n.n. 0.0440 0.0599 0.0731
n.n.n. 0.0034 0.0165 0.0158

Table VII: Integral corrections contributed from the six near-
est neighbors (n.n.) unit cells and the six next nearest neigh-

bors (n.n.n.) ones. The unit is Å−3 (the same as in Table V
and VI). See Fig. 10 for the illustration of the n.n. and n.n.n.
unit cells.

4. Analysis from the Rotational Symmetry

In this following, we analyze the integrals involved the
hyperfine Hamiltonian (B1) based on the symmetry prop-
erties of the Bloch wave functions. Under a C3 rotation
centered at the k-th M nucleus, we have

C3Ψ
c
τσ(~r) = Ψc

τσ(~r),

C3Ψ
v
τσ(~r) = eiτ

2π
3 Ψv

τσ(~r).
(B5)

For the intravalley integrals in the conduction band,

〈+| r
2
kx

r5k
|+〉c =

∫

d~rΨc∗
+ (~r)

r2kx
r5k

Ψc
+(~r)

=

∫

d~r|C3Ψ
c
+(~r)|2

C3(r
2
kx)

C3(r5k)

=
1

4
〈+| r

2
kx

r5k
|+〉c +

3

4
〈+|

r2ky
r5k

|+〉c

+

√
3

2
〈+| rkxrky

r5k
|+〉c . (B6)
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Figure 10: Schematics of the on-site unit cell (red diamond),
six nearest neighbors ones (green diamonds), and six next
nearest neighbors ones (yellow diamonds) for the evaluation
of the hyperfine interaction with the (a) transition metal and
(b) chalcogen nuclear spin. Large blue balls denote metal sites
and small orange balls denote chalcogen sites. The metal site
in the red diamond of (a) corresponds to rk = 0 in Eq. (B4),
and the chalcogen site in the red diamond of (b) corresponds
to r′k = 0. In the evaluation of the on-site contribution, the
range of integral V in Eq. (B4) corresponds to the red dia-
mond. In the evaluation of the nearest (next nearest) neigh-
bor contribution, V in Eq. (B4) corresponds to the sum of
the green (yellow) diamonds.

Similarly, we have

〈+| rkxrky
r5k

|+〉c = −
√
3

4
〈+| r

2
kx

r5k
|+〉c +

√
3

4
〈+|

r2ky
r5k

|+〉c

−1

2
〈+| rkxrky

r5k
|+〉c . (B7)

From the above two equations we find that

〈+|r
2
kx

r5k
|+〉c = 〈+|

r2ky
r5k

|+〉c,

〈+|rkxrky
r5k

|+〉c = 0.
(B8)

Other integrals can be worked out in the same way. We
find that 〈+| rkxrkz

r5
k

|+〉c = 〈+| rkyrkz

r5
k

|+〉c = 0.

The same relations hold for the intervalley integrals,

〈+|r
2
kx

r5k
|−〉c = 〈+|

r2ky
r5k

|−〉c,

〈+|rkxrky
r5k

|−〉c = 〈+|rkxrkz
r5k

|−〉c = 〈+|rkyrkz
r5k

|−〉c = 0.

In the valence band subspace, the intravalley integrals
are similar to those in the conduction band subspace.
However, it is different for the intervalley integrals. We

find that

〈+| r
2
kx

r5k
|−〉v = −〈+|

r2ky
r5k

|−〉v ,

〈+| rkxrky
r5k

|−〉v = i 〈+|
r2ky
r5k

|−〉v ,

〈+| 1

r3k
|−〉v = 〈+| r

2
kz

r5k
|−〉v = 0,

〈+| rkyrkz
r5k

|−〉v = i 〈+| rkxrkz
r5k

|−〉v . (B9)

The Bloch wave functions under the C3 rotation
around X nucleus have the following relations,

C′
3Ψ

c
νσ(~r) = eiν

2π
3 Ψc

νσ(~r),

C′
3Ψ

v
νσ(~r) = e−iν 2π

3 Ψv
νσ(~r).

(B10)

We find that the intravalley integrals have the same prop-
erty as for the M nucleus. In the following we list the
relations of intervalley integrals both for conduction and
valence band subspaces,
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|−〉v . (B11)

By comparing the relations obtained from symmetry
analysis with the numerical estimation in Table V and
VI, one can find that they agree very well. We note
that the relative errors between the two numerical esti-
mations becomes larger when we deal with the S nuclei
regime, which are possibly due to the small magnitude
of the integrals. In the numerical results obtained from
Abinit wave function, we find a finite intervalley interac-
tion in the valence band subspace for Mo nuclei, which
is predicted to be 0 in Roothaan-Hartree-Fock method.
However, the values are so small that they are probably
resulted from the calculation errors.
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5. Optimized atomic orbital functions

In the RHF method, we have the radial part of Mo-5s,
Mo-4d, and S-3p orbitals as follows,56,57

f5s(r) = 7.22802e−42.7425r + 116.248e−36.2098rr − 110.945e−19.9247rr + 8.81419e−52.4536rr2 + 21.0326e−14.652rr2+
104.34e−8.1505rr2 − 3214.89e−23.3229rr3 − 37.4997e−5.1157rr3 − 4.14133e−3.4917rr3 + 316.287e−13.6857rr4+
0.749325e−2.3571rr4 + 0.120996e−1.4897rr4 + 0.006006e−0.9661rr4,

f4d(r) = 81.5662e−22.9005rr2 + 329.352e−12.658rr2 + 40.5766e−6.0525rr2 − 14.1228e−3.5536rr2 + 227.235e−9.7486rr3−
4.0599e−2.7024rr3 − 0.451674e−1.7351rr3 − 0.0220095e−1.1346rr3,

f3p(r) = 3.55739e−22.6414rr − 19.0356e−10.4197rr − 9.64606e−6.116rr − 7.56414e−4.4156rr + 45.9701e−17.3448rr2+
4.35629e−2.6496rr2 + 1.39527e−1.6975rr2 + 0.179256e−1.1477rr2.

(B12)

These atomic orbitals are used to form the Bloch states.
Note that in the above expressions r’s are all in the
atomic unit here. We need a transform of the unit in

order to calculate the integrals in the hyperfine interac-
tion.
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14 J. D. Fuhr, A. Saúl, and J. O. Sofo, Physical review letters
92, 026802 (2004).

15 J.-Y. Noh, H. Kim, and Y.-S. Kim, Physical Review B 89,
205417 (2014).

16 S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang,

J. Liu, C. Ko, R. Raghunathanan, J. Zhou, et al., Scientific
reports 3 (2013).

17 A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke,
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