236 research outputs found

    Strong Convergence Theorems for Nonexpansive Mappings by Viscosity Approximation Methods in Banach Spaces

    Get PDF
    In this paper, we introduce a modified Ishikawa iterative process for a pair of nonexpansive mappings and obtain a strong convergence theorem in the framework of uniformly Banach spaces. Our results improve and extend the recent ones announced by Kim and Xu [T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal. 61 (2005) 51-60], Xu [H.K. Xu, Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298 (2004) 279-291] and some others.</p

    Preformed Particle Gels for Conformance Control

    Get PDF
    Track IV: Materials for Energy ApplicationsIncludes audio file (20 min.)Crude oil is found in underground porous sandstone or carbonate rock formation. After primary (natural energy) and secondary recovery (water flooding) have been exhausted, about 2/3rds of the original-oil-in-place is left behind. The US DOE states that Enhanced Oil Recovery (EOR) methods can produce another 200 billion of oil from the US reserves, same as what has cumulatively been produced so far. Excess water production is a major issue that leads to early well abandonment and unrecoverable hydrocarbon for mature wells. The average water to oil production ratio is greater than 7:1 in the USA. Gel treatments at injection wells to plug off preferentially the water thief zones are a proven cost-effective method to improve sweep efficiency in reservoirs and reduce excess water production during hydrocarbon production. A newer trend is applying preformed gels for the purpose because the preformed gels can overcome some distinct drawbacks inherent in in-situ gelation systems. This paper will summarize the preformed particle gel (PPG) conformance control technique which has been applied for about 2,000 wells. The paper will present: (1) the importance of the method to oil industry, (2) the properties of PPG products, (3) the mechanisms for PPG to control conformance; (4) the lessons we have learned from field applications, and (5) future research to improve the current technology for better conformance control results

    Deformation of the shrinkage pore in 7050 aluminum alloy during rolling process

    Get PDF

    Soil Organic Carbon Content and Microbial Functional Diversity Were Lower in Monospecific Chinese Hickory Stands than in Natural Chinese Hickory–Broad-Leaved Mixed Forests

    Get PDF
    To assess the effects of long-term intensive management on soil carbon cycle and microbial functional diversity, we sampled soil in Chinese hickory (Carya cathayensis Sarg.) stands managed intensively for 5, 10, 15, and 20 years, and in reference Chinese hickory–broad-leaved mixed forest (NMF) stands. We analyzed soil total organic carbon (TOC), microbial biomass carbon (MBC), and water-soluble organic carbon (WSOC) contents, applied 13C-nuclear magnetic resonance analysis for structural analysis, and determined microbial carbon source usage. TOC, MBC, and WSOC contents and the MBC to TOC ratios were lower in the intensively managed stands than in the NMF stands. The organic carbon pool in the stands managed intensively for twenty years was more stable, indicating that the easily degraded compounds had been decomposed. Diversity and evenness in carbon source usage by the microbial communities were lower in the stands managed intensively for 15 and 20 years. Based on carbon source usage, the longer the management time, the less similar the samples from the monospecific Chinese hickory stands were with the NMF samples, indicating that the microbial community compositions became more different with increased management time. The results call for changes in the management of the hickory stands to increase the soil carbon content and restore microbial diversity

    Soil Organic Carbon Content and Microbial Functional Diversity Were Lower in Monospecific Chinese Hickory Stands than in Natural Chinese Hickory–Broad-Leaved Mixed Forests

    Get PDF
    To assess the effects of long-term intensive management on soil carbon cycle and microbial functional diversity, we sampled soil in Chinese hickory (Carya cathayensis Sarg.) stands managed intensively for 5, 10, 15, and 20 years, and in reference Chinese hickory–broad-leaved mixed forest (NMF) stands. We analyzed soil total organic carbon (TOC), microbial biomass carbon (MBC), and water-soluble organic carbon (WSOC) contents, applied 13C-nuclear magnetic resonance analysis for structural analysis, and determined microbial carbon source usage. TOC, MBC, and WSOC contents and the MBC to TOC ratios were lower in the intensively managed stands than in the NMF stands. The organic carbon pool in the stands managed intensively for twenty years was more stable, indicating that the easily degraded compounds had been decomposed. Diversity and evenness in carbon source usage by the microbial communities were lower in the stands managed intensively for 15 and 20 years. Based on carbon source usage, the longer the management time, the less similar the samples from the monospecific Chinese hickory stands were with the NMF samples, indicating that the microbial community compositions became more different with increased management time. The results call for changes in the management of the hickory stands to increase the soil carbon content and restore microbial diversity

    Genetic deficiency of neuronal RAGE protects against AGE-induced synaptic injury

    Get PDF
    Synaptic dysfunction and degeneration is an early pathological feature of aging and age-related diseases, including Alzheimer's disease (AD). Aging is associated with increased generation and deposition of advanced glycation endproducts (AGEs), resulting from nonenzymatic glycation (or oxidation) proteins and lipids. AGE formation is accelerated in diabetes and AD-affected brain, contributing to cellular perturbation. The extent of AGEs' involvement, if at all, in alterations in synaptic structure and function is currently unknown. Here we analyze the contribution of neuronal receptor of AGEs (RAGE) signaling to AGE-mediated synaptic injury using novel transgenic neuronal RAGE knockout mice specifically targeted to the forebrain and transgenic mice expressing neuronal dominant-negative RAGE (DN-RAGE). Addition of AGEs to brain slices impaired hippocampal long-term potentiation (LTP). Similarly, treatment of hippocampal neurons with AGEs significantly decreases synaptic density. Such detrimental effects are largely reversed by genetic RAGE depletion. Notably, brain slices from mice with neuronal RAGE deficiency or DN-RAGE are resistant to AGE-induced LTP deficit. Further, RAGE deficiency or DN-RAGE blocks AGE-induced activation of p38 signaling. Taken together, these data show that neuronal RAGE functions as a signal transducer for AGE-induced synaptic dysfunction, thereby providing new insights into a mechanism by which the AGEs–RAGE-dependent signaling cascade contributes to synaptic injury via the p38 MAP kinase signal transduction pathway. Thus, RAGE blockade may be a target for development of interventions aimed at preventing the progression of cognitive decline in aging and age-related neurodegenerative diseases

    Cloud-Magnetic Resonance Imaging System: In the Era of 6G and Artificial Intelligence

    Full text link
    Magnetic Resonance Imaging (MRI) plays an important role in medical diagnosis, generating petabytes of image data annually in large hospitals. This voluminous data stream requires a significant amount of network bandwidth and extensive storage infrastructure. Additionally, local data processing demands substantial manpower and hardware investments. Data isolation across different healthcare institutions hinders cross-institutional collaboration in clinics and research. In this work, we anticipate an innovative MRI system and its four generations that integrate emerging distributed cloud computing, 6G bandwidth, edge computing, federated learning, and blockchain technology. This system is called Cloud-MRI, aiming at solving the problems of MRI data storage security, transmission speed, AI algorithm maintenance, hardware upgrading, and collaborative work. The workflow commences with the transformation of k-space raw data into the standardized Imaging Society for Magnetic Resonance in Medicine Raw Data (ISMRMRD) format. Then, the data are uploaded to the cloud or edge nodes for fast image reconstruction, neural network training, and automatic analysis. Then, the outcomes are seamlessly transmitted to clinics or research institutes for diagnosis and other services. The Cloud-MRI system will save the raw imaging data, reduce the risk of data loss, facilitate inter-institutional medical collaboration, and finally improve diagnostic accuracy and work efficiency.Comment: 4pages, 5figures, letter

    Synergistic Exacerbation of Mitochondrial and Synaptic Dysfunction and Resultant Learning and Memory Deficit in a Mouse Model of Diabetic Alzheimer’s Disease

    Get PDF
    Diabetes is considered to be a risk factor in Alzheimer’s disease (AD) pathogenesis. Although recent evidence indicates that diabetes exaggerates pathologic features of AD, the underlying mechanisms are not well understood. To determine whether mitochondrial perturbation is associated with the contribution of diabetes to AD progression, we characterized mouse models of streptozotocin (STZ)-induced type 1 diabetes and transgenic AD mouse models with diabetes. Brains from mice with STZ-induced diabetes revealed a significant increase of cyclophilin D (CypD) expression, reduced respiratory function, and decreased hippocampal long-term potentiation (LTP); these animals had impaired spatial learning and memory. Hyperglycemia exacerbated the upregulation of CypD, mitochondrial defects, synaptic injury, and cognitive dysfunction in the brains of transgenic AD mice overexpressing amyloid-β as shown by decreased mitochondrial respiratory complex I and IV enzyme activity and greatly decreased mitochondrial respiratory rate. Concomitantly, hippocampal LTP reduction and spatial learning and memory decline, two early pathologic indicators of AD, were enhanced in the brains of diabetic AD mice. Our results suggest that the synergistic interaction between effects of diabetes and AD on mitochondria may be responsible for brain dysfunction that is in common in both diabetes and AD
    • …
    corecore