236 research outputs found

    Development of an earthquake early warning system using real-time strong motion signals

    Get PDF
    As urbanization progresses worldwide, earthquakes pose serious threat to lives and properties for urban areas near major active faults on land or subduction zones off shore. Earthquake Early Warning (EEW) can be a useful tool for reducing earthquake hazards, if the spatial relation between cities and earthquake sources is favorable for such warning and their citizens are properly trained to respond to earthquake warning messages. An EEW system forewarns an urban area of forthcoming strong shaking, normally with a few sec to a few tens of sec of warning time, i.e., before the arrival of the destructive S-wave part of the strong ground motion. Even a few second of advanced warning time will be useful for pre-programmed emergency measures for various critical facilities, such as rapid-transit vehicles and high-speed trains to avoid potential derailment; it will be also useful for orderly shutoff of gas pipelines to minimize fire hazards, controlled shutdown of high-technological manufacturing operations to reduce potential losses, and safe-guarding of computer facilities to avoid loss of vital databases. We explored a practical approach to EEW with the use of a ground-motion period parameter τ_c and a high-pass filtered vertical displacement amplitude parameter Pd from the initial 3 sec of the P waveforms. At a given site, an earthquake magnitude could be determined from τ_c and the peak ground-motion velocity (PGV) could be estimated from Pd. In this method, incoming strong motion acceleration signals are recursively converted to ground velocity and displacement. A P-wave trigger is constantly monitored. When a trigger occurs, τ_c and Pd are computed. The earthquake magnitude and the on-site ground-motion intensity could be estimated and the warning could be issued. In an ideal situation, such warnings would be available within 10 sec of the origin time of a large earthquake whose subsequent ground motion may last for tens of seconds

    Experiment on an Onsite Early Warning Method for the Taiwan Early Warning System

    Get PDF
    As increasing urbanization is taking place worldwide, earthquake hazards pose serious threats to lives and property in urban areas. For seismic hazard mitigation, a practical earthquake forecast method appears to be far from realization, because of the extreme complexity involved in earthquake processes (e.g., Kanamori et al., 1997). Another approach to mitigate seismic hazards is the development of early warning systems (ews) (Nakamura, 1984, 1988; Heaton, 1985; United States National Research Council, 1991; Teng et al., 1997; United States Geological Survey, 1998; Wu et al., 1998; Wu and Teng, 2002; Allen and Kanamori, 2003). An ews provides a few seconds to tens of seconds of warning time for impending ground motions, allowing for mitigation measures in the short term. Early warning systems that estimate the severity of ground shaking and its onset time are in operation in Japan (Nakamura, 1984, 1988, 1989), Mexico (Espinosa-Aranda et al., 1995), and Taiwan (Teng et al., 1997; Wu et al., 1998, 1999; Wu and Teng, 2002). This timely information can be used to minimize property damage and the loss of lives in urban areas. It can also be used for real-time loss estimation to aid emergency response and recovery (Wu et al., 2002)

    A threshold-based earthquake early warning using dense accelerometer networks

    Get PDF
    Most earthquake early warning systems (EEWS) developed so far are conceived as either ‘regional’ (network-based) or ‘on-site’ (stand-alone) systems. The recent implementation of nationwide, high dynamic range, dense accelerometer arrays makes now available, potentially in real time, unsaturated waveforms of moderate-to-large magnitude earthquakes recorded at very short epicentral distances (<10–20 km). This would allow for a drastic increase of the early warning lead-time, for example, the time between the alert notification and the arrival time of potentially destructive waves at a given target site. By analysing strong motion data from modern accelerograph networks in Japan, Taiwan and Italy, we propose an integrated regional/on-site early warning method, which can be used in the very first seconds after a moderate-to-large earthquake to map the most probable damaged zones. The method is based on the real-time measurement of the period (τ_c) and peak displacement (Pd) parameters at stations located at increasing distances from the earthquake epicentre. The recorded values of early warning parameters are compared to threshold values, which are set for a minimum magnitude 6 and instrumental intensity VII, according to the empirical regression analyses of strong motion data. At each recording site the alert level is assigned based on a decisional table with four alert levels defined upon critical values of the parameters Pd and τ_c, which are set according to the error bounds estimated on the derived prediction equations. Given a real time, evolutionary estimation of earthquake location from first P arrivals, the method furnishes an estimation of the extent of potential damage zone as inferred from continuously updated averages of the period parameter and from mapping of the alert levels determined at the near-source accelerometer stations. The off-line application of the method to strong motion records of the M_w 6.3, 2009 Central Italy earthquake shows a very consistent match between the rapidly predicted (within a few seconds from the first recorded P wave) and observed damage zone, the latter being mapped from detailed macroseismic surveys a few days after the event. The proposed approach is suitable for Italy, where, during the last two decades, a dense network of wide dynamic-range accelerometer arrays has been deployed by the Department of Civil Protection (DPC), the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and other regional research agencies

    Spatial heterogeneity of tectonic stress and friction in the crust: new evidence from earthquake focal mechanisms in Taiwan

    Get PDF
    We performed inversions of earthquake focal mechanisms in central Taiwan to investigate the heterogeneity of the stress field and fault strength, and temporal variations of stress parameters, friction and pore pressure associated with the 1999 Chi-Chi earthquake. We divided the focal mechanism data into two groups: before and after the Chi-Chi earthquake, and analysed them separately. With the assumption of a uniform stress field, the friction coefficient is mostly within a range of 0.2–0.4 in central Taiwan, which is lower than the commonly quoted laboratory result, 0.6–0.85. The low friction coefficient is also inferred by the rotation of principal stress axes after the Chi-Chi earthquake. By contrast, if we assume that the friction is constant and failures occur on optimally oriented planes, we find that the resulting stress orientations must be spatially variable. However, a large dispersion of stress orientations is not seen in borehole breakouts and fault slip data, implying a constant friction model might be ruled out. Our analysis suggests that either the distribution of the coefficient of friction or pore pressure changed during the 1999 Chi-Chi earthquake. We infer that the pore pressure probably rose in the Chi-Chi rupture area and northern Longitudinal Valley and dropped in the areas south of the coseismic rupture area after the main shock

    Seismologically determined bedload flux during the typhoon season

    Get PDF
    Continuous seismic records near river channels can be used to quantify the energy induced by river sediment transport. During the 2011 typhoon season, we deployed a seismic array along the Chishan River in the mountain area of southern Taiwan, where there is strong variability in water discharge and high sedimentation rates. We observe hysteresis in the high-frequency (5–15 Hz) seismic noise level relative to the associated hydrological parameters. In addition, our seismic noise analysis reveals an asymmetry and a high coherence in noise cross-correlation functions for several station pairs during the typhoon passage, which corresponds to sediment particles and turbulent flows impacting along the riverbed where the river bends sharply. Based on spectral characteristics of the seismic records, we also detected 20 landslide/debris flow events, which we use to estimate the sediment supply. Comparison of sediment flux between seismologically determined bedload and derived suspended load indicates temporal changes in the sediment flux ratio, which imply a complex transition process from the bedload regime to the suspension regime between typhoon passage and off-typhoon periods. Our study demonstrates the possibility of seismologically monitoring river bedload transport, thus providing valuable additional information for studying fluvial bedrock erosion and mountain landscape evolution

    Seismology-based early identification of dam-formation landquake events

    Get PDF
    Flooding resulting from the bursting of dams formed by landquake events such as rock avalanches, landslides and debris flows can lead to serious bank erosion and inundation of populated areas near rivers. Seismic waves can be generated by landquake events which can be described as time-dependent forces (unloading/reloading cycles) acting on the Earth. In this study, we conduct inversions of long-period (LP, period ≥20 s) waveforms for the landquake force histories (LFHs) of ten events, which provide quantitative characterization of the initiation, propagation and termination stages of the slope failures. When the results obtained from LP waveforms are analyzed together with high-frequency (HF, 1–3 Hz) seismic signals, we find a relatively strong late-arriving seismic phase (dubbed Dam-forming phase or D-phase) recorded clearly in the HF waveforms at the closest stations, which potentially marks the time when the collapsed masses sliding into river and perhaps even impacting the topographic barrier on the opposite bank. Consequently, our approach to analyzing the LP and HF waveforms developed in this study has a high potential for identifying five dam-forming landquake events (DFLEs) in near real-time using broadband seismic records, which can provide timely warnings of the impending floods to downstream residents

    Low Cost Seismic Network Practical Applications for Producing Quick Shaking Maps in Taiwan

    Full text link
    Two major earthquakes of ML greater than 6.0 occurred in Taiwan in the first half of 2013. The vibrant shaking brought landslides, falling rocks and casualties. This paper presents a seismic network developed by National Taiwan University (NTU) with 401 Micro-Electro Mechanical System (MEMS) accelerators. The network recorded high quality strong motion signals from the two events and produced delicate shaking maps within one minute after the earthquake occurrence. The high shaking regions of the intensity map produced by the NTU system suggest damage and casualty locations. Equipped with a dense array of MEMS accelerometers, the NTU system is able to accommodate 10% signals loss from part of the seismic stations and maintain its normal functions for producing shaking maps. The system also has the potential to identify the rupture direction which is one of the key indices used to estimate possible damage. The low cost MEMS accelerator array shows its potential in real-time earthquake shaking map generation and damage avoidance

    Factors associated with one year retention to methadone maintenance treatment program among patients with heroin dependence in China

    Get PDF
    Abstract Objective The aim of this study was to evaluate the risk factors associated with dropout from Methadone Maintenance Treatment (MMT) clinics within a 1 year follow-up cohort study in China. Methods A data analysis is to explore the adherence of MMT during one year from three hundred and twenty patients with heroin dependence at five clinics (3 in Shanghai, 2 in Kunming) in China. All participants were from the part of China-United States cooperation project entitled “Research about improving the compliance and efficacy of methadone maintenance treatment in China”. Our data analysis includes the patients’ attendance in the 6 months clinical study and the data in another 6 months afterward. The data of patients at baseline were collected with the Addiction Severity Index (ASI) which is a semi-structured questionnaire covering socio-demographic characteristics and drug use history. The one year attendance after recruitment at the clinics and daily dose were abstracted from the MMT clinic register system. The Cox proportional hazards model were used to explore the risk factor of dropout, defined as seven consecutive days without methadone. Results By the end of 1 year of treatment 86 patients still remained in MMT without dropout (87% in Shanghai and 13% patients in Kunming). Over the entire 1-year period the median days of remaining in the program were 84 days (in Shanghai and Kunming were 317 days and 22 days).The factors associated with retention included age (HR = 0.98, 95%C.I.:0.96-0.99, P = 0.0062) and ASI alcohol scores (HR = 5.72, 95%C.I.:1.49-21.92, P = 0.0109) at baseline. Conclusion One year retention of newly recruited patients with heroin dependence was related to age and ASI alcohol scores at baseline. The adherence is poorer for the patients who are young and having more serious alcohol problems.http://deepblue.lib.umich.edu/bitstream/2027.42/109460/1/13011_2013_Article_286.pd
    corecore