60 research outputs found

    Molecules with multiple personalities: how switchable materials could revolutionise chemical sensing

    Get PDF
    Worldwide, the demand for sensing devices that can conform with the requirements of large-scale wireless sensor network (WSN) deployments is rising exponentially. Typically, sensors should be very low cost, low power (essentially self-sustaining), yet very rugged and reliable. At present, functioning WSN deployments involve physical transducers only, such as thermistors, accelerometers, photodetectors, or flow meters, to monitor quantities like temperature, movement, light level and liquid level/flow. Remote, widely distributed monitoring of molecular targets remains relatively unexplored, except in the case of targets that can be detected directly using ‘non-contact’ techniques like spectroscopy. This paper will address the issues inhibiting the close integration of chemical sensing with WSNs and suggest strategies based on fundamental materials science that may offer routes to new sensing surfaces that can switch between different modes of behaviour (e.g. active-passive, expand-contract)

    Synthesis and Application of Superabsorbent Polymer Microspheres for Rapid Concentration and Quantification of Microbial Pathogens in Ambient Water

    Get PDF
    Even though numerous methods have been developed for the detection and quantification of waterborne pathogens, the application of these methods is often hindered by the very low pathogen concentrations in natural waters. Therefore, rapid and efficient sample concentration methods are urgently needed. Here we present a novel method to pre-concentrate microbial pathogens in water using a portable 3D-printed system with super-absorbent polymer (SAP) microspheres, which can effectively reduce the actual volume of water in a collected sample. The SAP microspheres absorb water while excluding bacteria and viruses by size exclusion and charge repulsion. To improve the water absorption capacity of SAP in varying ionic strength waters (0-100 mM), we optimized the formulation of SAP to 180 g∙L⁻Âč Acrylamide, 75 g∙L⁻Âč Itaconic Acid and 4.0 g∙L⁻Âč Bis-Acrylamide for the highest ionic strength water as a function of the extent of cross-linking and the concentration of counter ions. Fluorescence microscopy and double-layer agar plating respectively showed that the 3D-printed system with optimally-designed SAP microspheres could rapidly achieve a 10-fold increase in the concentration of Escherichia coli (E. coli) and bacteriophage MS2 within 20 minutes with concentration efficiencies of 87% and 96%, respectively. Fold changes between concentrated and original samples from qPCR and RT-qPCR results were found to be respectively 11.34-22.27 for E. coli with original concentrations from 10⁎ to 10⁶ cell·mL⁻Âč, and 8.20-13.81 for MS2 with original concentrations from 10⁎-10⁶ PFU·mL⁻Âč. Furthermore, SAP microspheres can be reused for 20 times without performance loss, significantly decreasing the cost of our concentration system

    Synthesis and Application of Superabsorbent Polymer Microspheres for Rapid Concentration and Quantification of Microbial Pathogens in Ambient Water

    Get PDF
    Even though numerous methods have been developed for the detection and quantification of waterborne pathogens, the application of these methods is often hindered by the very low pathogen concentrations in natural waters. Therefore, rapid and efficient sample concentration methods are urgently needed. Here we present a novel method to pre-concentrate microbial pathogens in water using a portable 3D-printed system with super-absorbent polymer (SAP) microspheres, which can effectively reduce the actual volume of water in a collected sample. The SAP microspheres absorb water while excluding bacteria and viruses by size exclusion and charge repulsion. To improve the water absorption capacity of SAP in varying ionic strength waters (0-100 mM), we optimized the formulation of SAP to 180 g∙L⁻Âč Acrylamide, 75 g∙L⁻Âč Itaconic Acid and 4.0 g∙L⁻Âč Bis-Acrylamide for the highest ionic strength water as a function of the extent of cross-linking and the concentration of counter ions. Fluorescence microscopy and double-layer agar plating respectively showed that the 3D-printed system with optimally-designed SAP microspheres could rapidly achieve a 10-fold increase in the concentration of Escherichia coli (E. coli) and bacteriophage MS2 within 20 minutes with concentration efficiencies of 87% and 96%, respectively. Fold changes between concentrated and original samples from qPCR and RT-qPCR results were found to be respectively 11.34-22.27 for E. coli with original concentrations from 10⁎ to 10⁶ cell·mL⁻Âč, and 8.20-13.81 for MS2 with original concentrations from 10⁎-10⁶ PFU·mL⁻Âč. Furthermore, SAP microspheres can be reused for 20 times without performance loss, significantly decreasing the cost of our concentration system

    Stereotypical Images of STEM Professionals and STEM Career Interests in Chinese Elementary School Students

    Get PDF
    This study investigated stereotypical images of STEM professions and STEM career interest in Chinese elementary school students. The relationships between stereotypical images of STEM professionals and STEM career interests were also determined. Data for this study was gathered from two elementary schools in China, forming a convenience sample of 318 students enrolled from 3rd to 6th grade. Quantitative data of stereotypes about STEM professionals’ social skills, positive images of STEM professionals, views on STEM implications for society, and STEM career interests were gathered by a questionnaire with Likert scale. Follow-up structured interviews were performed with 12 participants. Elementary school students had strong stereotypes about STEM professionals’ social skills, slightly deep positive image of STEM professionals, and very positive views on STEM implications for society. However, their STEM career interests were not very high. Besides, elementary school students’ stereotypes about STEM professionals’ social skills have minor negative effects on their STEM career interests. Their positive image of STEM professionals and views on STEM implications for society have significant correlation with their STEM career interests

    Wearable technology for bio-chemical analysis of body fluids during exercise

    Get PDF
    This paper details the development of a textile based fluid handling system with integrated wireless biochemical sensors. Such research represents a new advancement in the area of wearable technologies. The system contains pH, sodium and conductivity sensors. It has been demonstrated during on-body trials that the pH sensor has close agreement with measurements obtained using a reference pH probe. Initial investigations into the sodium and conductivity sensors have shown their suitability for integration into the wearable system. It is thought that applications exist in personal health and sports performance and training

    Bio-sensing textile based patch with integrated optical detection system for sweat monitoring

    Get PDF
    Sensors, which can be integrated into clothing and used to measure biochemical changes in body fluids, such as sweat, constitute a major advancement in the area of wearable sensors. Initial applications for such technology exist in personal health and sports performance monitoring. However, sample collection is a complicated matter as analysis must be done in real-time in order to obtain a useful examination of its composition. This work outlines the development of a textile-based fluid handling platform which uses a passive pump to gather sweat and move it through a pre-defined channel for analysis. The system is tested both in vitro and in vivo. In addition, a pH sensor, which depends on the use of a pH sensitive dye and paired emitter-detector LEDs to measure colour changes, has been developed. In vitro and on-body trials have shown that the sensor has the potential to record real-time variations in sweat during exercise

    Integrated WiFi/PDR/Smartphone using an unscented Kalman filter algorithm for 3D indoor localization

    Get PDF
    Because of the high calculation cost and poor performance of a traditional planar map when dealing with complicated indoor geographic information, a WiFi fingerprint indoor positioning system cannot be widely employed on a smartphone platform. By making full use of the hardware sensors embedded in the smartphone, this study proposes an integrated approach to a three-dimensional (3D) indoor positioning system. First, an improved K-means clustering method is adopted to reduce the fingerprint database retrieval time and enhance positioning efficiency. Next, with the mobile phone’s acceleration sensor, a new step counting method based on auto-correlation analysis is proposed to achieve cell phone inertial navigation positioning. Furthermore, the integration of WiFi positioning with Pedestrian Dead Reckoning (PDR) obtains higher positional accuracy with the help of the Unscented Kalman Filter algorithm. Finally, a hybrid 3D positioning system based on Unity 3D, which can carry out real-time positioning for targets in 3D scenes, is designed for the fluent operation of mobile terminals
    • 

    corecore