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Abstract: Generative Adversarial Networks (GANs) are a class of deep learning models being applied
to image processing. GANs have demonstrated state-of-the-art performance in applications such as
image generation and image-to-image translation, just to name a few. However, with this success
comes the realization that the training of GANs takes a long time and is often limited by available
computing resources. In this research, we propose to construct a Coreset using Fréchet Descriptor
Distances (FDD-Coreset) to accelerate the training of GAN for blob identification. We first propose a
Fréchet Descriptor Distance (FDD) to measure the difference between each pair of blob images based
on the statistics derived from blob distribution. The Coreset is then employed using our proposed
FDD metric to select samples from the entire dataset for GAN training. A 3D-simulated dataset
of blobs and a 3D MRI dataset of human kidneys are studied. Using computation time and eight
performance metrics, the GAN trained on the FDD-Coreset is compared against the model trained on
the entire dataset and an Inception and Euclidean Distance-based Coreset (IED-Coreset). We conclude
that the FDD-Coreset not only significantly reduces the training time, but also achieves higher
denoising performance and maintains approximate performance of blob identification compared
with training on the entire dataset.

Keywords: coreset; Fréchet Distance; training acceleration; blob identification; deep learning; GAN

1. Introduction

Generative Adversarial Networks (GANs), proposed by Ian Goodfellow [1] in 2014,
are a class of deep learning models that are applied to image processing and consist of
two sub-networks: a generator and a discriminator. The generator is trained to synthesize
artificial versions of the original images, and a discriminator is employed to distinguish
the artificial images from the real images. During the GAN training, both the generator
network and the discriminator network interact with each other iteratively, resulting in
generated images resembling as close as to the real images. GANs have demonstrated state-
of-the-art performance in many applications including medicine, such as medical image
generation [2], medical image-to-image translation [3], etc. Most recently, CycleGAN [4] has
attracted great attention to translate unpaired images from one domain (known as source
domain, e.g., one image modality) to another (known as target domain, e.g., a different
image modality) by simultaneously training two sets of generators and discriminators, one
for each domain. CycleGAN has been applied to organ segmentation [3], tumor detec-
tion [5], medical image denoising [6], medical image synthesis [7], blob detection [8], etc.
In general, there are two types of CycleGAN-based models: (1) imaging-level translation;
(2) object-focused image translation. For imaging-level translation, the model transfers
whole images from one domain to another domain on a pixel or voxel basis. For example,
Oulbacha et al. [9] proposed a pseudo-3D CycleGAN to synthesize CT images from MRI
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for surgical guidance. Yang et al. [10] proposed a switchable CycleGAN with adaptive in-
stance normalization to generate synthesized images for hypopharyngeal cancer diagnosis.
For object-focused image translation, the model considers the domain knowledge from
the target objects as added constraints to regularize the image translation to alleviate the
geometric distortion issue. For example, Zhang et al. [11] utilized segmentation to derive
a shape consistency constraint and applied it on CycleGAN to solve the shape distortion
in cross-modality synthesis. Ma et al. [12] introduced illumination regularization and
structure loss function for medical image enhancement. Xu et al. leveraged the geometric
information of the target objects to assist the synthetic image rendering [8].

While the performance of CyleGAN-based models in these applications are promising,
a common critique is that the model training is slow and often limited by computing
resources. For example, the original CycleGAN [4,13] took 220 h of training with NVIDIA
Titan X GPU on 10,000 2D paintings images. The BlobGAN [8], trained on 1000 3D blob
images, took ~26 h for 50 epochs. One may argue that the training time can be reduced
using advanced GPUs. However, such computing resources may not be readily available.
To reduce the training time, researchers began exploring training using a subset instead
of the whole dataset. Using false positive rate to measure the performance of generated
image quality, Nuha et al. [14] proposed the DCGAN model and showed the training
on subsets can lead to a false positive rate comparable to the training using the entire
dataset with less computing time. Unfortunately, it was noted that the performance may
be unstable for some experiments, as DCGAN led to very low false positive rate [14]. To
maintain the quality of GAN’s generated image during subset selection, DeVries et al. [15]
proposed a novel instance selection approach based on manifold density of dataset. They
removed the low-density regions to improve subsets’ samples quality. Yet, this assumes
that the low-density regions are noisy data region which may not always be true for medical
images. Additionally, the computational time of this approach trained on ImageNet was
reduced from 14.8 days to only 3.7 days [14], which still is considered to be computationally
expensive even with advanced GPU power, for example, eight NVIDIA V100 GPUs in
this case.

Recently, Coreset has attracted considerable attention on its applications including
GAN. For example, an Inception embedding-based Coreset approach was proposed in [16]
to accelerate GAN training. While this approach can be applied to the BlobGAN [8], with
an Inception classifier being employed first to derive Inception embedding, we argue
that additional computational cost occurs, which is against the goal of this study. In
addition, the Inception embedding may be problematic to calculate the distance metric
due to the fact medical images are known to be noisy. Motivated by object-focused image
translation approaches, we introduce Fréchet Descriptor Distance (FDD) derived from
object-related statistics to accelerate GAN’s training. To demonstrate this idea, we focus
on one specific type of imaging problem: blob images. This type of imaging has been
utilized in a number of medical applications such as nuclei in 2D microscopy images [17]
and glomeruli in 3D kidney cationic ferritin-enhanced MRI [18,19]. These images have
some common characteristics: the number of blobs is large, and the shape of these blobs
roughly follows Gaussian distribution. In this research, we introduce a new blob-based
FDD to measure the distances between the image pair based on object (blob) statistics. The
Coreset is then constructed using the new FDD metric on the image pairs, then the Coreset
selection step can be taken out of the GAN training loop. To validate the performance
of an out of loop FDD-Coreset for GAN training, we conduct two experiments. The first
experiment is to identify the blobs in a 3D simulated blob image dataset where the locations
of blobs are known. We choose the naïve random sampling method and the Inception
and Euclidean Distance-based Coreset (IED-Coreset) [16] for comparison. Other than
computation time, eight performance metrics are used including Peak Signal-to-Noise
ratio (PSNR), Detection Error Rate (DER), Precision, Recall, F-score, Dice, Intersection over
Union (IoU), and Blobness (PB). In the second experiment, we implement the FDD-Coreset
on 3D human kidney images obtained from MRI. Since there is no ground truth available,
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we compare against the above two methods using stereology results. Both experiments
support the conclusion that FDD-Coreset can significantly accelerate the GAN training
with comparable performance.

The remainder of the paper is organized as follows: Section 2 provides a review
on related works. Section 3 describes our proposed FDD-Coreset in detail. Section 4
demonstrates the comparative results on the 3D synthetic images and 3D human kidney
images. Finally, the conclusions are presented in Section 5.

2. Related Works

The overall objective of this research is to develop computational efficiency strategies
using Coreset for GAN model training, with the blob identification problem as the use
cases. In this section, we first provide a review on blob identification followed by Coreset.

2.1. Blob Identification

While large objects can often be automatically or semi-automatically isolated, small
objects (blobs) are difficult to identify (detect and segment). Blobs can range in size and
location in images. Examples of blobs include cells or nuclei in images from optical
microscopy [17], glomeruli in cationic ferritin-enhanced magnitude resonance images
(CFE-MRI) of the kidney [18,19]. Major challenges to identify small blobs include low image
resolution and high image noise. The small blobs are often massive and can overlap together.
To overcome the challenges of blob identification, a number of blob detectors have been
developed for blob identification such as nuclei detection and cell detection, among which
scale-space-based blob detectors have attracted great attention. For example, Kong et al. [20]
proposed the generalized Laplacian of Gaussian (gLoG), which accurately detected blobs
of various scales, shapes and orientations from histologic and fluorescent microscopic
images. Zhang et al. developed Hessian-based Laplacian of Gaussian (HLoG) [21] and
Hessian-based Difference of Gaussian (HDoG) [22] to automatically detect glomeruli in
CFE-MRI. However, these blob detectors are not robust to noise [23], leading to high false
positive rates. Recently, deep learning-based blob detector, U-Net joint with Hessian-
based Difference of Gaussian (UH-DoG) [24] has been proposed to take advantage of the
complementary properties of U-Net [25] to alleviate the over-detection issue of HdoG.
However, UH-DoG may overlook large variations in blob size. As an extension of UH-DoG,
another small blob detector using Bi-Threshold Constrained Adaptive Scales, BTCAS [26],
is able to address this issue by searching local optimal DoG scale, which is adapted to the
range of blob sizes to better separate touching blobs, and thus, the under-segmentation
issue of U-Net is addressed. While UH-DoG and BTCAS detect blobs to some extent,
there are limitations such as domain difference between public datasets and target dataset,
geometric difference between small blobs, etc. To address these limitations, a denoising
convexity-consistent Generative Adversarial Network (BlobGAN) [8] has been proposed for
improved small blob identification. Experiments have shown that this blob detector could
achieve high denoising performance and selectively denoise the image without affecting
the properties of blobs. However, the training of the BlobGAN is slow and computationally
expensive. In this research, we propose a Coreset-based approach to accelerate its training.

2.2. Coreset

In Coreset, a subset of the data is to be optimally selected such that a model trained
on the selected subset will perform as closely as possible to a model trained on the entire
dataset. Huang et al. [27] constructed Coreset to accelerate the computation of K-means
and K-median clustering algorithms. Sener et al. [28] formulated the active learning
problem as a Coreset selection problem where only core samples are to be labeled to
improve the performance of Convolutional Neural Network (CNN) models. Coreset has
also been adopted in GAN training. For example, Sinha et al. [16] developed a Coreset
sampling approach to speed up GAN training. A pre-trained Inception classifier was first
implemented to extract the Inception embedding from the whole dataset based on which
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pairwise Euclidean distances were calculated. The Coreset is then derived for training in
each iteration through comparing the distance between data samples. While this approach
accelerates the GAN training to some extent, it is noted that the Coreset needs to be
generated within each iteration of the training, in other words, within the training loop.
From iteration to iteration, it is highly likely the same images will be selected for the Coreset
which is computationally inefficient, especially considering the long computational time
required to generate the Inception embedding. Additionally, the authors of [16] focused
on the GAN model, taking a batch of images as Coreset for training, while CycleGANs
utilize the Instance Normalization [29] as its normalization method for each layer, and
thus, the training of CycleGAN often needs one image instead of a batch of images per
iteration. Recognizing the potentials of Coreset and issues from deriving Coreset within the
training loop as in [16], we argue that the training of GAN, in this study, CycleGANs, can
be greatly accelerated if the Coreset selection is taken out of the training loop. We propose
to implement Coreset as a pre-training step instead of a within-training process, and in
this case, the Euclidian distance calculated from Inception embedding (derived during the
GAN training) for Coreset construction in [16] does not apply.

3. Methods

In the proposed FDD-Coreset approach, given the group of descriptors of blob dis-
tribution from the entire blob images dataset, a Fréchet Descriptor Distance (FDD) is first
derived to measure the difference between each pair of blob images; a Coreset is then
selected from the entire dataset based on FDD to train a GAN model. To demonstrate
the concept of an FDD-Coreset, the GAN of interest in this research is BlobGAN [8], a
model designed for small blob identification. The source code of BlobGAN is available at:
https://github.com/joshlyman/BlobGAN (accessed on 23 July 2022).

3.1. BlobGAN and Blob Descriptors

BlobGAN (Figure 1) consists of three steps: (1) 3D synthetic blobs are rendered using
a 3D elliptical Gaussian function. The 3D blobs with respect to the corresponding masks
and true images comprise the training input; (2) a 3D GAN is trained to denoise the
images; (3) denoised 3D blobs are identified from the denoised images. The goal of 3D
blob synthesis in Step 1 is to mimic the blobs (e.g., glomeruli in [30]) in real noisy blob
images and provides the blob mask to fix the location of blobs. The image denoising
in Step 2 adopts the domain translation architecture from CycleGAN [4], which consists
of two generators and two discriminators. Given the 3D clean synthetic blob images as
source domain and the 3D real noisy blob images as target domain, BlobGAN is to train
a generator to learn the mapping from the source domain to the target domain and train
another generator to learn the mapping from the target domain to the source domain
iteratively, until the translated 3D noisy fake blob images approximate the 3D real noisy
blob images and the translated 3D denoised blob images approximate the 3D clean bob
images. The two discriminators are maintained to distinguish real images and translated
images obtained from generators. The total loss of BlobGAN consists of adversarial loss,
cycle consistency loss and identity loss adopted from CycleGAN [4] and an additional
convexity consistency loss proposed by BlobGAN. Once image denoising is completed,
Hessian convexity mask and blob mask generated from denoised blob images are used to
derive the final blobs under a joint constraint.

https://github.com/joshlyman/BlobGAN
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Here, we apply the elliptical Gaussian function to identify the blob descriptors. A 3D
elliptical Gaussian function is in the general form as follows:

F(x, y, z) = A·e−(a(x−x0)
2+b(y−y0)

2+c(z−z0)
2+d(x−x0)(y−y0)+e(y−y0)(z−z0)+ f (x−x0)(z−z0)) (1)

where A is a normalization factor, and x0, y0 and z0 are the coordinates of the center of
the Gaussian function F(x, y, z). The coefficients a, b, c, d, e and f control the shape and
orientation of F(x, y, z) via θ, ϕ, σx, σy and σz as given:

a = sin2θcos2 ϕ

σ2
x

+ sin2θsin2 ϕ

σ2
y

+ cos2θ
σ2

z

b = cos2θcos2 ϕ

σ2
x
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y
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z
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σ2
x
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y

d = sin2θcos2 ϕ

σ2
x
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σ2
y

− sin2θ
σ2

z

e = − cosθsin2ϕ

σ2
x

+ cosθsin2ϕ

σ2
y

f = − sinθsin2ϕ

σ2
x

+ sinθsin2ϕ

σ2
y

(2)

Based on the 5 descriptors θ, ϕ, σx, σy and σz from blob distribution, an FDD distance
metric is proposed to measure the difference between each pair of images.

3.2. Fréchet Descriptor Distance

Fréchet Distance (FD) is used to measure the similarity between curves [31] and has
been used in drug discovery [32], video applications [33], and others. In deep learning
research, FD on Inception, termed Fréchet Inception Distance (FID) [34], is commonly used
in GAN models. To compute FID, an Inception model I(·) needs to be pre-trained, and the
features from the penultimate layer of Inception model are extracted. Let I f : R3 → R be a
3D input image, and assuming these features from I f come from a multivariate Gaussian,
the image features can be represented as:

I
(

I f ; Θ
)
∼ N f (µ f , ∑ f ), (3)

where Θ is the parameter set of Inception model, and µ f and ∑ f are mean and covari-
ance matrices of multivariate Gaussian N f . Let the image features on a 3D real image
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Ir : R3 → R be I(Ir; Θ) ∼ Nr(µr, ∑r) and the image features on a 3D synthesized image
Is : R3 → R be I(Is; Θ) ∼ Ns(µs, ∑s), then FID is defined as:

dFID(Nr(I(Ir; Θ)), Ns(I(Is; Θ))) = ‖µr − µs‖ 2
2 + tr(∑r +∑s−2

√
∑r ∑s), (4)

where tr is the trace of matrix. While FID is mainly used to evaluate the quality or
effectiveness of GAN by measuring the similarity between real images and synthesized
image, it has not been used as a distance metric in Coreset, mainly due to its computing
costs. The computational complexity of FID is O(I(Ir; Θ) + I(Is; Θ) + dFID). It is known
that computing Θ and deep layers in Inception model is costly, with largest portion of
computation dedicated for Inception model, that is, O(I(Ir; Θ) + I(Is; Θ)) >> O(dFID).

To accelerate GAN training, we propose Fréchet Descriptor Distance (FDD) as an
alternative distance metric. This is motivated by the unique characteristics from the
application of interest in this research, which is to say that the number of blobs is large
and the shape of these blobs roughly follows Gaussian distributions. Instead of using FID
on the whole images, FDD is to derive blob-related statistics which are used to measure
the distances between the image pairs. In Section 3.1, we synthesize 3D blobs using 3D
elliptical Gaussian function, and we know that each blob has 5 descriptors: θ, ϕ, σx, σy and
σz. These blob descriptors are object-related statistics in 3D blob images. Assume each
descriptor follows a Gaussian and a 3D blob image consist of M blobs, the descriptors set
Ω =

{
θ, ϕ, σx, σy, σz

}
i∈M follows a multivariate Gaussian. Let the descriptor set on a 3D

blob image Ib : R3 → R be Ωb ∼ Nb(µb, ∑b), then FDD for 2 pair-wisely compared 3D
blob images Ib1 and Ib2 is defined as:

dFDD(Nb1(Ωb1), Nb2(Ωb2)) = ‖µb1 − µb2‖ 2
2 + tr(∑b1 +∑b2−2

√
∑b1 ∑b2) (5)

The computational complexity of FDD is O(dFDD). O(dFDD) is a function of M,
the number of blobs and O(dFID) is a function of the image features from Inception
model, for example, 64. We conclude O(dFDD ) ≈ O(dFID), O(I(Ir; Θ) + I(Is; Θ)) >>
O(dFID) ≈ O(dFDD), thus O(I(Ir; Θ) + I(Is; Θ) + dFID) >> O(dFDD), and FDD is more
computationally efficient for Coreset selection.

3.3. Dataset Sampling Based on Coreset

Models based on Coreset will provide approximate performance of using the whole
dataset. Given an image dataset D, a Coreset C of D is a subset C ⊂ D that approximates
the “shape” of D. Let the cost function of model be L(·), then the objective function to
select Coreset can be represented as:

min
C:|C|=k

|L(D)−L(C)|, (6)

where k is desired size of C. Equation (6) indicates the performance under the selected
Coreset C with size k to be as close as possible with the performance under the whole
dataset D. We formulate it as a k-center problem (minimax facility location [35]) to choose
k core sample images such that the largest distance between a sample image and its nearest
center is minimized. This is represented as:

min
C:|C|=k

max
Ii∈D

min
Ij∈C

d
(

Ii, Ij
)
, (7)

where d(., .) is a distance metric on D. This is an NP-Hard problem. However, it is possible
to obtain an approximation solution efficiently using a greedy approach. Here, we use FDD
as the distance metric d(., .) in Equation (7) and the details of an FDD-Coreset is shown in
Algorithm 1.
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Algorithm 1: Pseudocode for FDD-Coreset.

Input: target size k, 3D blob image datasets D (|D| > k) with descriptors sets
{

Ωp
}

p∈|D|
Output: Coreset C (|C| = k)
1. Initialize Coreset C = {}
2. While |C| < k :
3. For 3D blob image Ii from D\C :
4. Extract the blob descriptors sets Ωi of Ii
5. For 3D blob image Ij from C :
6. Extract the blob descriptors sets Ωj of Ij

7. Calculate FDD distance between Ii and Ij: dFDD

(
Ni(Ωi), Nj

(
Ωj

))
8. Iteratively until find sample image S =argmax

Ii∈D\C
min
Ij∈C

dFDD

(
Ni(Ωi), Nj

(
Ωj

))
9. Add sample image S in Coreset: C = C ∪ {S}
10. End While
11. Return Coreset C

4. Experiments and Results
4.1. Training Dataset

We evaluated our method using two experiments. The BlobGAN’s training datasets
in the source domain and target domain are different. In the source domain, we used
the blob images synthesized by the 3D elliptical Gaussian function in Section 3.1 for both
experiments. In the target domain, we used simulated noisy images in the first experiment
and the real-world 3D human MR images of the kidney in the second experiment.

In the first experiment, we randomly synthesized 1000 3D blob images (64 × 64
× 32 voxels) to construct the source domain of the BlobGAN. The 3D training image
(Figure 2a) blobs were scattered randomly in the image space. These blobs were gener-
ated using a random number generator and blobs’ number ranged from 500 to 800. The
parameters of 3D elliptical Gaussian function for each synthesized blob are as follows:
θ, ϕ ∈

[
0, 180

◦]
, σx, σy, σz ∈ [0.5, 1.5]. The blob mask (Figure 2b) was recorded for each

blob image. For the target domain, we synthesized another 1000 3D blob images using
the same 3D blob synthesis function. To simulate noisy 3D blob images (Figure 2c), we
added random Gaussian noise to the synthesized images. The noise was generated by the
Gaussian function, with µnoise = 0 and σ2

noise defined by:

σ2
noise =

σ2
image

10
SNR

10
(8)

where the Signal-to-Noise Ratio (SNR) lies in the interval [0.01 dB, 1 dB]. The 1000 3D
blob images and 1000 3D noisy blob images comprise the training dataset of baseline in the
first experiment.
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Figure 2. Illustration of training input images of BlobGAN (a) Synthesized 3D blobs image from
source domain. (b) Blob mask of (a) from source domain. (c) Synthesized 3D noisy blobs image from
target domain. (d) 3D MR image of the human kidney: patch from target domain.

In the second experiment, the source domain contains 1000 3D blob images (64 × 64
× 32 voxels). For target domain, we studied three 3D human kidneys MR images. Each
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human kidney MR image has voxel dimensions of 896 × 512 × 512. These three human
kidneys were obtained after autopsy through a donor network (The International Institute
for the Advancement of Medicine, Edison, NJ, USA) after receiving Institutional Review
Board (IRB) approval and informed consent from Arizona State University [19]. They were
imaged by as described in [19,36,37]. To validate our model, each time we trained the
BlobGAN on two human kidneys and tested on the other one. We randomly sampled
1000 3D non-overlapping patch images (64 × 64 × 32 voxels, Figure 2d) from the two
human kidneys in the training dataset. The sampling process was performed in the cortex
region because the medulla region does not have any glomeruli. The medulla and cortex
regions of human kidneys were annotated by a domain expert. The resulting 1000 3D blob
images and 1000 3D human kidney patch images are treated as the training dataset of
baseline in the second experiment.

4.2. Experiment I: Validation Experiments Using 3D Synthetic Image Data

To validate the performance of the FDD-Coreset on the BlobGAN, we synthesized
an independent dataset of 1000 3D blob images (64 × 64 × 32 voxels) with Gaussian
distributed noise as the test data. The version of these images without noise and their blob
masks were recorded as ground truth to compare the performance with other approaches.
The goal of this experiment is to show that the FDD-Coreset is capable of accelerating
the training of the BlobGAN, while maintaining the BlobGAN’s performance on blob
identification. First, we selected k Coreset from these 1000 3D blob images to train the
BlobGAN. To train the BlobGAN, λcycle and λconvex were set to 10, and λidentity was set to
0.5. The BlobGAN was trained from scratch using a learning rate of 0.0002 with the Adam
optimizer (batch size = 1). The training typically took about 20 epochs to converge, so we
did not set up the decay policy for the learning rate.

We compared the computation time of the IED-Coreset [16] with the proposed FDD-
Coreset under varying sample size k (see Table 1). As shown in Table 1, the FDD-Coreset
is significantly faster (266–42,784 times) than the IED-Coreset for size k from 1 to 10. We
compared the total computation time from Coreset selection to training Coreset on the
BlobGAN. We randomly sampled 1000 3D blob images to train the BlobGAN as baseline.
We generated a Coreset using the IED-Coreset (size k = 10) and the FDD-Coreset (size
k = 10, 20, 30), respectively, and trained these groups of Coreset on the BlobGAN by
20 epochs. Note that we did not evaluate the Coreset via the IED-Coreset with k = 20,
30. This is because with k = 10, the IED-Coreset took 42,784 times compared to the
FDD-Coreset with k = 10. Once these Coresets were generated, we compared the total
computational time from the Coreset generation to the BlobGAN training (see Table 2). It is
apparent that the BlobGAN trained on the IED-Coreset with k = 10 takes the longest time.
The reason is that the Coreset selection in the IED-Coreset takes almost 99% of the whole
process. The BlobGAN trained on the FDD-Coreset with k = 10, 20 and 30 all performs
significantly faster (31–87 times) than training on the entire dataset. This is because the
FDD-Coreset reduces the entire 1000 3D images to k core images which significantly reduces
the BlobGAN training time. The BlobGAN trained on the FDD-Coreset with k = 10, 20
and 30 performs significantly faster (189–530 times) than training on the IED-Coreset with
k = 10. The reason is that the IED-Coreset calculated the distance between images based
on Inception embedding from images, and there exists duplicated computation in the
batch selection. We conclude that the total computation time for training BlobGAN on the
FDD-Coreset with k = 10, 20 and 30 is significantly less than the entire dataset and the
IED-Coreset, even with k = 10.
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Table 1. Computation time comparison of IED-Coreset and FDD-Coreset on 3D synthetic blob images
(unit: seconds).

k Coreset Samples IED-Coreset FDD-Coreset

1 2.66 0.01
2 3325.27 1.17
3 13,366.92 2.00
4 33,394.27 3.39
5 66,640.30 4.66
6 116,509.83 5.89
7 186,813.33 7.67
8 279,370.76 9.30
9 398,713.87 10.71
10 546,784.21 12.78

Table 2. Computation time comparison of BlobGAN trained on entire dataset (1000 random sam-
ples), IED-Coreset (k = 10) and proposed FDD-Coreset (k = 10, 20, 30) on 3D synthetic blob images
(unit: seconds).

k Coreset Samples Entire Dataset IED-Corese FDD-Coreset

10
89,927.46

547,825.60 1032.19
20 – 1995.25
30 – 2896.44

We evaluated the model performance (blob identification) using eight metrics: Peak
Signal-to-Noise Ratio (PSNR), Detection Error Rate (DER), Precision, Recall, F-score, Dice
coefficient, Intersection over Union (IoU), and Blobness (PB), as follows:

1. Peak Signal-to-Noise Ratio (PSNR) metric is to measure the performance of image
denoising. Let the final 3D denoised blobs image be x : R3 → R and the 3D blobs
image without noises be y : R3 → R , then PSNR is defined as follows:

PSNR = 20log10
MAXx

||x− y||2
, (9)

where MAXx is the possible maximum voxel values of x.
2. Detection Error Rate (DER) is to measure the difference ratio between the number of

detected blobs and the ground truth. DER can be calculated by Equation (10).

DER =
| NGT − NDet |

NGT
(10)

where NGT represents the # of ground truth blobs and NDet represents the # of detected
blobs.

To avoid duplicate counting, the number (#) of true positives TP was calculated by
Equation (11)

TP = min
{

#
{
(i, j) : minm

i=1Dij ≤ dδ

}
, #
{
(i, j) : minn

j=1Dij ≤ dδ

}}
, (11)

where m is the number of true glomeruli, n is the number of blob candidates, and dδ is a
thresholding parameter set to a positive value (0,+∞). If dδ is small, fewer blob candidates
are counted, since the distance between the blob candidate centroid and ground-truth
should be small. If dδ is too large, more blob candidates are counted. A candidate was
considered as TP if the centroid of its magnitude was in a detection pair (i, j) for which the
nearest ground truth center j had not been paired, and the Euclidian distance Dij between
ground truth center j and blob candidate i was less than or equal to dδ. Here, since local
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intensity extremes could be anywhere within a small blob with an irregular shape, we set d

to the average diameter of the blobs: dδ = 2×
√

∑(i,j,k) f (i,j,k)
π . TP is used for the precision in

Equation (12), Recall in Equation (13) and F-score in Equation (14).

3. Precision is to measure the fraction of retrieved blobs confirmed by the ground truth.

Precision =
TP
n

(12)

4. Recall is to measure the fraction of ground-truth data retrieved.

Recall =
TP
m

(13)

5. F-score is the overall performance of precision and recall.

F-score = 2× Precision× Recall
(Precision + Recall)

(14)

6. Dice coefficient (Dice) is to measure the similarity between the segmented blob mask
and the ground truth.

Dice (BM, BG) =
2|BM ∩ BG|
|BM|+ |BG| , (15)

where BM is the binary mask for segmentation result and BG is the binary mask for
the ground truth.

7. Intersection over Union (IoU) is to measure the amount of overlap between the seg-
mented blob mask and the ground truth.

IoU (BM, BG) =
BM ∩ BG
BM ∪ BG

, (16)

where BM is the binary mask for segmentation result and BG is the binary mask for
the ground truth.

8. Blobness (PB) is to measure the likelihood of the objects with a blob shape. PB for each
blob candidate bi from blobs set Sblob is calculated by Equation (17):

PBbi∈Sblob
=

3× |det(H(J − f ))|
2
3

pm(H(J − f ))
(17)

where f is the normalized 3D dark blobs image, H represents the Hessian matrix and
pm represents the principal minors of Hessian matrix.

The performance comparison between the BlobGAN trained on the entire dataset
(1000 random samples), IED-Coreset (k = 10) and FDD-Coreset (k = 10, 20, 30) is shown
in Table 3. Compared to the BlobGAN trained on the entire dataset, the BlobGAN trained
on the FDD-Coreset (k = 20) provides better performance on PSNR, and the BlobGAN
trained on the FDD-Coreset (k = 30) provides better performance on DER, with comparable
performance on Recall and F-score. The BlobGAN trained on the IED-Coreset (k = 10) and
the FDD-Coreset (k = 10, 20, 30) gives, in both cases, a lower performance on Dice and IoU
than the BlobGAN trained on the entire dataset, but the FDD-Coreset (k = 30) gives the
closest performance. The BlobGAN trained on the FDD-Coreset (k = 10) has the closest PB
value with the BlobGAN trained on the entire dataset and the ground truth. We conclude
that the BlobGAN trained on the FDD-Coreset provides comparable performance to the
model trained on the entire dataset.
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Table 3. Performance comparison (avg ± std) of BlobGAN trained on entire dataset (1000 Random
Samples), IED-Coreset (k = 10) and proposed FDD-Coreset (k = 10, 20, 30) on 3D synthetic images.

Metrics Entire Dataset IED-Coreset
(k = 10)

FDD-Coreset
(k = 10)

FDD-Coreset
(k = 20)

FDD-Coreset
(k = 30)

PSNR 12.539 ± 0.143 13.000 ± 0.753 12.084 ± 0.423 15.758 ± 0.373 11.489 ± 0.216
DER 0.091 ± 0.037 0.124 ± 0.131 0.171 ± 0.156 0.219 ± 0.061 0.052 ± 0.037

Precision 0.941 ± 0.013 0.759 ± 0.069 0.671 ± 0.056 0.923 ± 0.018 0.827 ± 0.024
Recall 0.855 ± 0.033 0.781 ± 0.052 0.771 ± 0.042 0.720 ± 0.049 0.845 ± 0.032
F-score 0.896 ± 0.018 0.766 ± 0.030 0.715 ± 0.028 0.807 ± 0.029 0.835 ± 0.014

Dice 0.825 ± 0.017 0.548 ± 0.046 0.662 ± 0.014 0.502 ± 0.039 0.671 ± 0.022
IoU 0.702 ± 0.024 0.379 ± 0.044 0.495 ± 0.015 0.336 ± 0.035 0.505 ± 0.025

PB (Ground Truth: 0.519) 0.538 ± 0.279 0.609 ± 0.302 0.577 ± 0.308 0.583 ± 0.290 0.610 ± 0.298

4.3. Experiment II: Validation Experiments Using 3D Human Kidney MR Images

In this experiment, we investigated the proposed FDD-Coreset approach on 3D MR
images to measure the number (Nglom) and apparent volume (aVglom) of glomeruli in
healthy and diseased human donor kidneys that were not accepted for transplant. Since
we have three 3D MR human kidney images, and each of them has voxel dimensions
of 896 × 512 × 512 and the input of the BlobGAN is a 3D patch with voxel dimensions
of 64 × 64 × 32, we divided each human kidney into 1792 3D patches (64 × 64 × 32) to
validate the performance of the BlobGAN. The final identification mask of the whole kidney
was reconstructed by stacking all 3D patches. To train the BlobGAN, λcycle and λconvex were
set to 10, λidentity was set to 0.5, the learning rate was 0.0002, and the Adam optimizer was
used with a batch size set to 1.

We compared the total computation time from Coreset selection to training Coreset on
the BlobGAN on 3D MR human kidney images. Similarly with Section 4.2, we have the
original random sampled 1000 3D blob images to train the BlobGAN as the baseline, so we
generated Coreset (size k = 10) through the IED-Coreset and the FDD-Coreset (size k = 10),
respectively, and trained these groups of Coreset on the BlobGAN by 20 epochs. Once
these Coreset are generated, we compare the total computational time from the Coreset
generation to the BlobGAN training and summarize them in Table 4, from where we can
see the results show that the BlobGAN trained on the IED-Coreset with k = 10 on three
human kidneys takes the longest time. The BlobGAN trained on the FDD-Coreset with
k = 10 on three kidneys all perform significantly faster (76 times) than training on the
entire dataset. The BlobGAN trained on the FDD-Coreset with k = 10 on three kidneys
performs, in all cases, significantly faster (460 times) than training on the IED-Coreset with
k = 10. We can conclude that training the BlobGAN on the FDD-Coreset with k = 10 on 3D
MR human kidney images is significantly computationally more efficient than the entire
dataset and the IED-Coreset with k = 10, and this is consistent with the comparison of
computation time in Section 4.2.

Table 4. Computation time comparison of BlobGAN trained on entire dataset (1000 random samples),
IED-Coreset (k = 10) and proposed FDD-Coreset (k = 10) on 3D human kidney images (unit: seconds).

Human Kidney Entire Dataset IED-Coreset (k = 10) FDD-Coreset (k = 10)

CF 1 91,325.20 547,800.21 1195.58
CF 2 91,382.40 547,801.81 1180.38
CF 3 91,515.60 547,772.61 1199.58

Nglom and mean aVglom are reported in Tables 5 and 6, where the BlobGAN trained
on the entire dataset (1000 random samples), the BlobGAN trained on the IED-Coreset
with k = 10 and the BlobGAN trained on the FDD-Coreset with k = 10 are compared to
the data from unbiased dissector–fractionator stereology [18]. We used these stereology
data from [19] as ground truth and calculated aVglom based on the method from [37]. The
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differences between the results of these three training approaches and stereology data are
also listed in Tables 5 and 6. As shown in Tables 5 and 6, Nglom and mean aVglom derived
from the BlobGAN trained on the FDD-Coreset with k = 10 provides a smaller difference
ratio with stereology than the BlobGAN trained on the IED-Coreset with k = 10. While the
BlobGAN trained on the entire dataset has the smallest difference ratio with stereology, it
takes 96% more computational time than the FDD-Coreset with k = 10, as shown in Table 4.
We could conclude that the FDD-Coreset not only significantly reduces the training time,
but also maintains the approximate performance of glomerular segmentation compared
with training on the entire dataset.

Table 5. Human kidney glomerular segmentation results (Nglom ) using BlobGAN trained on entire
dataset (1000 Random Samples), IED-Coreset (k = 10) and proposed FDD-Coreset (k = 10) comparing
with stereology.

HUMAN
KIDNEY

Nglom (×106)
(STEREOLOGY)

Nglom (×106)
(ENTIRE

DATASET)

Difference
Ratio (%)

Nglom (×106)
(IED-CORESET

(k = 10))

Difference
Ratio (%)

Nglom (×106)
(FDD-CORESET

(k = 10))

Difference
Ratio (%)

CF 1 1.13 1.05 7.08 1.58 39.82 1.26 11.50
CF 2 0.74 0.71 4.05 0.96 29.73 0.78 5.41
CF 3 1.46 1.48 1.37 1.77 21.23 1.53 4.79

Table 6. Human kidney glomerular segmentation results (mean aVglom) using BlobGAN trained
on entire dataset (1000 Random Samples), IED-Coreset (k = 10) and proposed FDD-Coreset (k = 10)
comparing with stereology.

HUMAN
KIDNEY

Mean aVglom

(×10−3mm3)
(STEREOLOGY)

Mean aVglom

(×10−3mm3)
(ENTIRE

DATASET)

Difference
Ratio (%)

Mean aVglom

(×10−3mm3)
(IED-CORESET

(k = 10))

Difference
Ratio (%)

Mean aVglom

(×10−3mm3)
(FDD-CORESET

(k = 10))

Difference
Ratio (%)

CF 1 5.01 5.19 3.59 4.48 10.58 5.20 3.79
CF 2 4.68 4.80 2.56 3.61 22.86 5.02 7.26
CF 3 2.82 2.81 0.35 2.25 20.21 2.93 3.90

For illustration, example results from CF1 are shown in Figure 3. As seen, the BlobGAN
trained on the FDD-Coreset has more similar glomerular segmentation results to the
BlobGAN trained on the entire dataset than the BlobGAN trained on the IED-Coreset.
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Figure 3. Glomerular segmentation results from 3D MR images of human kidney (CF1 slice 256).
(a) Original magnitude image. (b) Glomerular segmentation results of BlobGAN trained on entire
dataset (1000 random samples). (c) Glomerular segmentation results of BlobGAN trained on IED-
Coreset (k = 10). (d) Glomerular segmentation results of BlobGAN trained on FDD-Coreset (k = 10).
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4.4. Discussion: Clinical Translation

Imaging biomarkers from blob images have great potential to support clinical deci-
sions. Taking glomerulus-based imaging biomarkers (Nglom, aVglom) from Experiment II
as an example, the biomarkers can serve as significant indicators in clinical trials, reduc-
ing cost and burden associated with related study on early detection of kidney diseases.
While these biomarkers are clinically important, to date, the only methodology to obtain
these biomarkers are destructive stereological approaches that can only be performed post
mortem. Advanced development of magnitude resonance imaging (MRI) is making the
measurement of these biomarkers more feasible under a non-destructive imaging approach.
However, there are several challenges in glomerulus detection by MRI. First, the glomeruli
are small relative to the imaging resolution and have a similar visual appearance as the
noise. Second, there are over a million glomeruli in the cortex of the human kidney, and the
image intensity distribution is heterogeneous. Third, a significant proportion of glomeruli
overlap due to the low image resolution, making it difficult to identify them as individual
blobs. The BlobGAN [8] has been developed to address these issues for improved glomeruli
identification. However, the training of the BlobGAN is slow and computationally expen-
sive. With the FDD-Coreset applied in the training of the BlobGAN, the training time of
the BlobGAN is reduced significantly and the performance approximates the BlobGAN
trained on the entire dataset. It shows the promise of rapid acquisition where imaging data
can be used in a timeframe to influence patient care.

5. Conclusions

In this research, an FDD-Coreset approach is proposed to select subset samples used
in GAN training to address the computational challenges. A Fréchet Descriptor Distance
(FDD) is first proposed to measure the difference between each pair of blob images. Second,
we select the Coreset from the entire dataset using FDD metric. We conducted two experi-
ments. In the first experiment, we evaluated the performance of the FDD-Coreset on the
BlobGAN using a set of 3D synthetic blob images. Computational time and eight perfor-
mance metrics including Peak Signal-to-Noise Ratio (PSNR), Detection Error Rate (DER),
Precision, Recall, F-score, Dice coefficient, Intersection over Union (IoU), and Blobness
(PB), were used to compare the performance of the FDD-Coreset with the entire dataset
(1000 random samples) and the IED-Coreset. Compared to training on the entire dataset,
the BlobGAN trained on the FDD-Coreset greatly achieved a more than 96% decrease in
computational time, a more than 25% increase in PSNR, a more than 40% decrease in DER,
and provides comparable performance in blob detection (Precision, Recall, F-score), blob
segmentation (Dice, IoU), and blob synthesis (PB). Three 3D MR human kidney images
were studied in the second experiment. Compared to training on the entire dataset, the
BlobGAN trained on the FDD-Coreset greatly achieved a more than 96% decrease in com-
putational time and comparable performance in Nglom and aVglom. From the results of the
two experiments, we conclude that the BlobGAN trained on the proposed FDD-Coreset
significantly reduces the training time of the BlobGAN, achieves higher denoising perfor-
mance (PSNR) and maintains approximate performance of blob identification compared to
training on the entire dataset.

While the results of this study are encouraging, there is room for improvement. The
proposed FDD is derived from object statistics, which are blob descriptors from blob
distribution. This could be potentially used for accelerating other object-focused image
translation models where the shape of objects (blob, nuclei, glomeruli, etc.) follow Gaussian
distribution. However, if the shape of objects (tumor, organ, etc.) is irregular and the
distribution is unknown, the proposed FDD metric will not be applicable. It is our plan to
explore a distribution-agnostic-based Coreset approach as the next step. In addition, the
blob images studied in this research have a large number of objects to derive the statistic
descriptors. Some other medical image applications may have a smaller number of objects
(e.g., tumors, lesions) to be investigated. We plan to study other discriminative features
instead of shape as object statistics, to increase the effectiveness of Coreset.
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