499 research outputs found

    Mapping QTLs for mineral accumulation and shoot dry biomass under different Zn nutritional conditions in Chinese cabbage ( Brassica rapa L. ssp. pekinensis )

    Get PDF
    Abstract Chinese cabbage (Brassica rapa L. ssp. pekinensis) is one of the most important vegetables in China. Genetic dissection of leaf mineral accumulation and tolerance to Zn stress is important for the improvement of the nutritional quality of Chinese cabbage by breeding. A mapping population with 183 doubled haploid (DH) lines was used to study the genetics of mineral accumulation and the growth response to Zn. The genetic map was constructed based on 203 AFLPs, 58 SSRs, 22 SRAPs and four ESTPs. The concentration of 11 minerals was determined in leaves for 142 DH lines grown in an open field. In addition shoot dry biomass (SDB) under normal, deficient and excessive Zn nutritional conditions were investigated in hydroponics experiments. Ten QTLs, each explaining 11.1¿17.1% of the Na, Mg, P, Al, Fe, Mn, Zn and Sr concentration variance, were identified by multiple-QTL model (MQM) mapping. One common QTL was found affecting SDB under normal, deficient and excessive Zn nutritional conditions. An additional QTL was detected for SDB under Zn excess stress only. These results offer insights into the genetic basis of leaf mineral accumulation and plant growth under Zn stress conditions in Chinese cabbag

    Duality between quantum symmetric algebras

    Full text link
    Using certain pairings of couples, we obtain a large class of two-sided non-degenerated graded Hopf pairings for quantum symmetric algebras.Comment: 15 pages. Letters in Math. Phy., to appear soo

    Large Eddy Simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil

    Get PDF
    AbstractCompared to non-cavitating flow, cavitating flow is much complex owing to the numerical difficulties caused by cavity generation and collapse. In this paper, the cavitating flow around a NACA66 hydrofoil is studied numerically with particular emphasis on understanding the cavitation structures and the shedding dynamics. Large Eddy Simulation (LES) was coupled with a homogeneous cavitation model to calculate the pressure, velocity, vapor volume fraction and vorticity around the hydrofoil. The predicted cavitation shedding dynamics behavior, including the cavity growth, break-off and collapse downstream, agrees fairly well with experiment. Some fundamental issues such as the transition of a cavitating flow structure from 2D to 3D associated with cavitation–vortex interaction are discussed using the vorticity transport equation for variable density flow. A simplified one-dimensional model for the present configuration is adopted and calibrated against the LES results to better clarify the physical mechanism for the cavitation induced pressure fluctuations. The results verify the relationship between pressure fluctuations and the cavity shedding process (e.g. the variations of the flow rate and cavity volume) and demonstrate that the cavity volume acceleration is the main source of the pressure fluctuations around the cavitating hydrofoil. This research provides a better understanding of the mechanism driving the cavitation excited pressure pulsations, which will facilitate development of engineering designs to control these vibrations

    Merging binary black holes formed through double-core evolution

    Get PDF
    Context. To date, various formation channels of merging events have been heavily explored with the detection of nearly 100 double black hole (BH) merger events reported by the LIGO-Virgo-KAGRA (LVK) Collaboration. In this paper, we systematically investigate an alternative formation scenario: binary BHs (BBHs) formed through double helium stars (hereafter, “double-core evolution channel”). In this scenario, two helium stars (He-rich stars) could be the outcome of the classical isolated binary evolution scenario with and without the common envelope (CE) phase (i.e., CE channel and stable mass transfer channel) or, alternatively, of massive close binaries evolving chemically homogeneously (i.e., CHE channel). Aims. We study the properties (i.e., the chirp masses and the effective spins) of BBHs formed through the double-core evolution and investigate the impact of different efficiencies of angular momentum transport within massive He-rich stars on double-core evolution. Methods. We performed detailed stellar structure and binary evolution calculations that take into account internal rotation and mass loss of He-rich stars as well as tidal interactions in binaries. We systematically studied the parameter space of initial binary He-rich stars, including the initial mass and metallicity of He-rich stars as well as initial orbital periods. Apart from direct core collapse with mass and angular momentum conserved, we also follow the framework in Batta & Ramirez-Ruiz (2019, ArXiv e-prints [arXiv:1904.04835]) to estimate the mass and spin of the resulting BHs. Results. We show that the radii of massive He-rich stars decrease as a function of time, which comes mainly from mass loss and mixing in high metallicity and from mixing in low metallicity. For double He-rich stars with equal masses in binaries, we find that tides start to be at work on the zero age helium main sequence (i.e., the time when a He-rich star starts to burn helium in the core, which is analogous to zero age main sequence for core hydrogen burning) for initial orbital periods not longer than 1.0 day, depending on the initial metallicities. In addition to the stellar mass-loss rate and tidal interactions in binaries, we find that the role of the angular momentum transport efficiency in determining the resulting BH spins becomes stronger when considering BH progenitors originated from a higher metal-metallicity environment. We highlight that the double-core evolution scenario does not always produce fast-spinning BBHs and compare the properties of the BBHs reported from the LVK with our modeling. Conclusions. After detailed binary calculations of double-core evolution, we have confirmed that the spin of the BH is not only determined by the interplay of the binary’s different initial conditions (metallicity, mass, and orbital period) but is also dependent on the angular momentum transport efficiency within its progenitor. We predict that with the sensitivity improvements to the LVK’s next observing run (O4), the sample of merging BBHs will contain more sources with positive but moderate (even high) χeff and part of the events will likely show to have been formed through the double-core evolution channel

    Top-illuminated dye-sensitized solar cells with a room-temperature- processed ZnO photoanode on metal substrates and a Pt-coated Ga-doped ZnO counter electrode

    Get PDF
    We report on top-illuminated, fluorine tin oxide/indium tin oxide-free (FTO/ITO-free), dye-sensitized solar cells (DSCs) using room-temperature- processed ZnO layers on metal substrates as the working electrodes and Pt-coated Ga-doped ZnO layers (GZO) as the counter electrodes. These top-illuminated DSCs with GZO render comparable efficiency to those employing commercial FTO counter electrodes. Despite a lower current density, the top-illuminated DSCs result in a higher fill factor than conventional DSCs due to a low ohmic loss at the electrode/semiconductor interface. The effect of metal substrate on the performance of the resulting top-illuminated DSCs is also studied by employing various metals with different work functions. Ti is shown to be a suitable metal to be used as the working electrode in the top-illuminated device architecture owing to its low ohmic loss at the electrode/semiconductor interface, minimum catalytic activity on redox reactions and high resistance to corrosion by liquid electrolytes. © 2011 IOP Publishing Ltd

    Anomaly analysis of Hawking radiation from Kaluza-Klein black hole with squashed horizon

    Full text link
    Considering gravitational and gauge anomalies at the horizon, a new method that to derive Hawking radiations from black holes has been developed by Wilczek et al. In this paper, we apply this method to non-rotating and rotating Kaluza-Klein black holes with squashed horizon, respectively. For the rotating case, we found that, after the dimensional reduction, an effective U(1) gauge field is generated by an angular isometry. The results show that the gauge current and energy-momentum tensor fluxes are exactly equivalent to Hawking radiation from the event horizon.Comment: 15 pages, no figures, the improved version, accepted by Eur. Phys. J.

    Modelling of strain effects in manganite films

    Full text link
    Thickness dependence and strain effects in films of La1xAxMnO3La_{1-x}A_xMnO_3 perovskites are analyzed in the colossal magnetoresistance regime. The calculations are based on a generalization of a variational approach previously proposed for the study of manganite bulk. It is found that a reduction in the thickness of the film causes a decrease of critical temperature and magnetization, and an increase of resistivity at low temperatures. The strain is introduced through the modifications of in-plane and out-of-plane electron hopping amplitudes due to substrate-induced distortions of the film unit cell. The strain effects on the transition temperature and transport properties are in good agreement with experimental data only if the dependence of the hopping matrix elements on the MnOMnMn-O-Mn bond angle is properly taken into account. Finally variations of the electron-phonon coupling linked to the presence of strain turn out important in influencing the balance of coexisting phases in the filmComment: 7 figures. To be published on Physical Review

    A study of charged kappa in J/ψK±Ksππ0J/\psi \to K^{\pm} K_s \pi^{\mp} \pi^0

    Full text link
    Based on 58×10658 \times 10^6 J/ψJ/\psi events collected by BESII, the decay J/ψK±Ksππ0J/\psi \to K^{\pm} K_s \pi^{\mp} \pi^0 is studied. In the invariant mass spectrum recoiling against the charged K(892)±K^*(892)^{\pm}, the charged κ\kappa particle is found as a low mass enhancement. If a Breit-Wigner function of constant width is used to parameterize the kappa, its pole locates at (849±7714+18)i(256±4022+46)(849 \pm 77 ^{+18}_{-14}) -i (256 \pm 40 ^{+46}_{-22}) MeV/c2c^2. Also in this channel, the decay J/ψK(892)+K(892)J/\psi \to K^*(892)^+ K^*(892)^- is observed for the first time. Its branching ratio is (1.00±0.190.32+0.11)×103(1.00 \pm 0.19 ^{+0.11}_{-0.32}) \times 10^{-3}.Comment: 14 pages, 4 figure
    corecore