57 research outputs found
TGF-beta signaling proteins and the Protein Ontology
The Protein Ontology (PRO) is designed as a formal and principled Open Biomedical
Ontologies (OBO) Foundry ontology for proteins. The components of PRO extend from a classification of proteins on the basis of evolutionary relationships at the homeomorphic level to the representation of the multiple protein forms of a gene, including those resulting from alternative splicing, cleavage and/or posttranslational
modifications. Focusing specifically on the TGF-beta signaling proteins, we describe the building, curation, usage and dissemination of PRO. PRO provides a framework for the formal representation of protein classes and protein forms in the OBO Foundry. It is designed to enable data retrieval and integration and machine reasoning at the molecular level of proteins, thereby facilitating cross-species comparisons, pathway analysis, disease modeling and the generation of new hypotheses
PIRSF Family Classification System for Protein Functional and Evolutionary Analysis
The PIRSF protein classification system (http://pir.georgetown.edu/pirsf/) reflects evolutionary relationships of full-length proteins and domains. The primary PIRSF classification unit is the homeomorphic family, whose members are both homologous (evolved from a common ancestor) and homeomorphic (sharing full-length sequence similarity and a common domain architecture). PIRSF families are curated systematically based on literature review and integrative sequence and functional analysis, including sequence and structure similarity, domain architecture, functional association, genome context, and phyletic pattern. The results of classification and expert annotation are summarized in PIRSF family reports with graphical viewers for taxonomic distribution, domain architecture, family hierarchy, and multiple alignment and phylogenetic tree. The PIRSF system provides a comprehensive resource for bioinformatics analysis and comparative studies of protein function and evolution. Domain or fold-based searches allow identification of evolutionarily related protein families sharing domains or structural folds. Functional convergence and functional divergence are revealed by the relationships between protein classification and curated family functions. The taxonomic distribution allows the identification of lineage-specific or broadly conserved protein families and can reveal horizontal gene transfer. Here we demonstrate, with illustrative examples, how to use the web-based PIRSF system as a tool for functional and evolutionary studies of protein families
TGF-beta signaling proteins and the Protein Ontology
BACKGROUND: The Protein Ontology (PRO) is designed as a formal and principled Open Biomedical Ontologies (OBO) Foundry ontology for proteins. The components of PRO extend from a classification of proteins on the basis of evolutionary relationships at the homeomorphic level to the representation of the multiple protein forms of a gene, including those resulting from alternative splicing, cleavage and/or post-translational modifications. Focusing specifically on the TGF-beta signaling proteins, we describe the building, curation, usage and dissemination of PRO. RESULTS: PRO is manually curated on the basis of PrePRO, an automatically generated file with content derived from standard protein data sources. Manual curation ensures that the treatment of the protein classes and the internal and external relationships conform to the PRO framework. The current release of PRO is based upon experimental data from mouse and human proteins wherein equivalent protein forms are represented by single terms. In addition to the PRO ontology, the annotation of PRO terms is released as a separate PRO association file, which contains, for each given PRO term, an annotation from the experimentally characterized sub-types as well as the corresponding database identifiers and sequence coordinates. The annotations are added in the form of relationship to other ontologies. Whenever possible, equivalent forms in other species are listed to facilitate cross-species comparison. Splice and allelic variants, gene fusion products and modified protein forms are all represented as entities in the ontology. Therefore, PRO provides for the representation of protein entities and a resource for describing the associated data. This makes PRO useful both for proteomics studies where isoforms and modified forms must be differentiated, and for studies of biological pathways, where representations need to take account of the different ways in which the cascade of events may depend on specific protein modifications. CONCLUSION: PRO provides a framework for the formal representation of protein classes and protein forms in the OBO Foundry. It is designed to enable data retrieval and integration and machine reasoning at the molecular level of proteins, thereby facilitating cross-species comparisons, pathway analysis, disease modeling and the generation of new hypotheses
Recommended from our members
Meningioma Genomics: Diagnostic, Prognostic, and Therapeutic Applications
There has been a recent revolution in our understanding of the genetic factors that drive meningioma, punctuating an equilibrium that has existed since Cushingās germinal studies nearly a century ago. A growing appreciation that meningiomas share similar biologic features with other malignancies has allowed extrapolation of management strategies and lessons from intra-axial central nervous system neoplasms and systemic cancers to meningiomas. These features include a natural proclivity for invasion, frequent intratumoral heterogeneity, and correlation between biologic profile and clinical behavior. Next-generation sequencing has characterized recurrent somatic mutations in NF2, TRAF7, KLF4, AKT1, SMO, and PIK3CA, which are collectively present in ~80% of sporadic meningiomas. Genomic features of meningioma further associate with tumor location, histologic subtype, and possibly clinical behavior. Such genomic decryption, along with advances in targeted pharmacotherapy, provides a maturing integrated view of meningiomas. We review recent advances in meningioma genomics and probe their potential applications in diagnostic, therapeutic, and prognostic frontiers
Recommended from our members
Abstract: Syndactyly: National Analysis of Trends in Epidemiology and Surgical Management from 1997ā2012
UniProt: the Universal Protein knowledgebase
To provide the scientific community with a single, centralized, authoritative resource for protein sequences and functional information, the SwissāProt, TrEMBL and PIR protein database activities have united to form the Universal Protein Knowledgebase (UniProt) consortium. Our mission is to provide a comprehensive, fully classified, richly and accurately annotated protein sequence knowledgebase, with extensive crossāreferences and query interfaces. The central database will have two sections, corresponding to the familiar SwissāProt (fully manually curated entries) and TrEMBL (enriched with automated classification, annotation and extensive crossāreferences). For convenient sequence searches, UniProt also provides several nonāredundant sequence databases. The UniProt NREF (UniRef) databases provide representative subsets of the knowledgebase suitable for efficient searching. The comprehensive UniProt Archive (UniParc) is updated daily from many public source databases. The UniProt databases can be accessed online (http://www.uniprot.org) or downloaded in several formats (ftp://ftp.uniprot.org/pub). The scientific community is encouraged to submit data for inclusion in UniPro
The Universal Protein Resource (UniProt)
The Universal Protein Resource (UniProt) provides the scientific community with a single, centralized, authoritative resource for protein sequences and functional information. Formed by uniting the Swiss-Prot, TrEMBL and PIR protein database activities, the UniProt consortium produces three layers of protein sequence databases: the UniProt Archive (UniParc), the UniProt Knowledgebase (UniProt) and the UniProt Reference (UniRef) databases. The UniProt Knowledgebase is a comprehensive, fully classified, richly and accurately annotated protein sequence knowledgebase with extensive cross-references. This centrepiece consists of two sections: UniProt/Swiss-Prot, with fully, manually curated entries; and UniProt/TrEMBL, enriched with automated classification and annotation. During 2004, tens of thousands of Knowledgebase records got manually annotated or updated; we introduced a new comment line topic: TOXIC DOSE to store information on the acute toxicity of a toxin; the UniProt keyword list got augmented by additional keywords; we improved the documentation of the keywords and are continuously overhauling and standardizing the annotation of post-translational modifications. Furthermore, we introduced a new documentation file of the strains and their synonyms. Many new database cross-references were introduced and we started to make use of Digital Object Identifiers. We also achieved in collaboration with the Macromolecular Structure Database group at EBI an improved integration with structural databases by residue level mapping of sequences from the Protein Data Bank entries onto corresponding UniProt entries. For convenient sequence searches we provide the UniRef non-redundant sequence databases. The comprehensive UniParc database stores the complete body of publicly available protein sequence data. The UniProt databases can be accessed online (http://www.uniprot.org) or downloaded in several formats (ftp://ftp.uniprot.org/pub). New releases are published every two week
The Universal Protein Resource (UniProt): an expanding universe of protein information
The Universal Protein Resource (UniProt) provides a central resource on protein sequences and functional annotation with three database components, each addressing a key need in protein bioinformatics. The UniProt Knowledgebase (UniProtKB), comprising the manually annotated UniProtKB/Swiss-Prot section and the automatically annotated UniProtKB/TrEMBL section, is the preeminent storehouse of protein annotation. The extensive cross-references, functional and feature annotations and literature-based evidence attribution enable scientists to analyse proteins and query across databases. The UniProt Reference Clusters (UniRef) speed similarity searches via sequence space compression by merging sequences that are 100% (UniRef100), 90% (UniRef90) or 50% (UniRef50) identical. Finally, the UniProt Archive (UniParc) stores all publicly available protein sequences, containing the history of sequence data with links to the source databases. UniProt databases continue to grow in size and in availability of information. Recent and upcoming changes to database contents, formats, controlled vocabularies and services are described. New download availability includes all major releases of UniProtKB, sequence collections by taxonomic division and complete proteomes. A bibliography mapping service has been added, and an ID mapping service will be available soon. UniProt databases can be accessed online at http://www.uniprot.org or downloaded at ftp://ftp.uniprot.org/pub/database
The Universal Protein Resource (UniProt)
The Universal Protein Resource (UniProt) provides the scientific community with a single, centralized, authoritative resource for protein sequences and functional information. Formed by uniting the Swiss-Prot, TrEMBL and PIR protein database activities, the UniProt consortium produces three layers of protein sequence databases: the UniProt Archive (UniParc), the UniProt Knowledgebase (UniProt) and the UniProt Reference (UniRef) databases. The UniProt Knowledgebase is a comprehensive, fully classified, richly and accurately annotated protein sequence knowledgebase with extensive cross-references. This centrepiece consists of two sections: UniProt/Swiss-Prot, with fully, manually curated entries; and UniProt/TrEMBL, enriched with automated classification and annotation. During 2004, tens of thousands of Knowledgebase records got manually annotated or updated; we introduced a new comment line topic: TOXIC DOSE to store information on the acute toxicity of a toxin; the UniProt keyword list got augmented by additional keywords; we improved the documentation of the keywords and are continuously overhauling and standardizing the annotation of post-translational modifications. Furthermore, we introduced a new documentation file of the strains and their synonyms. Many new database cross-references were introduced and we started to make use of Digital Object Identifiers. We also achieved in collaboration with the Macromolecular Structure Database group at EBI an improved integration with structural databases by residue level mapping of sequences from the Protein Data Bank entries onto corresponding UniProt entries. For convenient sequence searches we provide the UniRef non-redundant sequence databases. The comprehensive UniParc database stores the complete body of publicly available protein sequence data. The UniProt databases can be accessed online (http://www.uniprot.org) or downloaded in several formats (ftp://ftp.uniprot.org/pub). New releases are published every two weeks
- ā¦