143 research outputs found

    Progressive Impairment of Motor Skill Learning in a D-Galactose- Induced Aging Mouse Model

    Get PDF
    Abstract.-Chronic administration of D-galactose (D-gal) has been reported to cause behavioral deterioration in mice similar to what is observed in the aging process, but the effect of D-gal on motor skill learning has not been examined. In the present study, mice were treated with D-gal (100 mg/kg/day) for a period ranging from 1 to 9 weeks, and motor skill learning was assessed using the rotarod test. D-gal-treated mice exhibited deficits in performance, including a shorter latency to fall and a decrease in intersession improvement compared to controls. Notably, motor skill deficiencies in mice subjected to short-term D-gal treatment (2-4 weeks) were rescued through repeated training, while there was no comparable improvement in mice receiving D-gal over a long term (≥ 5 weeks). The decline in rotarod performance reached a plateau at 7 weeks of D-gal exposure, suggesting that there is a ceiling effect. These results provide evidence that D-gal impairs motor learning capacity in a time-dependent manner, and demonstrate that chronic administration of D-gal is a reliable model for the behavioral decline associated with aging

    Global tropospheric ozone trends, attributions, and radiative impacts in 1995–2017: an integrated analysis using aircraft (IAGOS) observations, ozonesonde, and multi-decadal chemical model simulations

    Get PDF
    Quantification and attribution of long-term tropospheric ozone trends are critical for understanding the impact of human activity and climate change on atmospheric chemistry but are also challenged by the limited coverage of long-term ozone observations in the free troposphere where ozone has higher production efficiency and radiative potential compared to that at the surface. In this study, we examine observed tropospheric ozone trends, their attributions, and radiative impacts from 1995–2017 using aircraft observations from the In-service Aircraft for a Global Observing System database (IAGOS), ozonesondes, and a multi-decadal GEOS-Chem chemical model simulation. IAGOS observations above 11 regions in the Northern Hemisphere and 19 of 27 global ozonesonde sites have measured increases in tropospheric ozone (950–250 hPa) by 2.7 ± 1.7 and 1.9 ± 1.7 ppbv per decade on average, respectively, with particularly large increases in the lower troposphere (950–800 hPa) above East Asia, the Persian Gulf, India, northern South America, the Gulf of Guinea, and Malaysia/Indonesia by 2.8 to 10.6 ppbv per decade. The GEOS-Chem simulation driven by reanalysis meteorological fields and the most up-to-date year-specific anthropogenic emission inventory reproduces the overall pattern of observed tropospheric ozone trends, including the large ozone increases over the tropics of 2.1–2.9 ppbv per decade and above East Asia of 0.5–1.8 ppbv per decade and the weak tropospheric ozone trends above North America, Europe, and high latitudes in both hemispheres, but trends are underestimated compared to observations. GEOS-Chem estimates an increasing trend of 0.4 Tg yr−1 of the tropospheric ozone burden in 1995–2017. We suggest that uncertainties in the anthropogenic emission inventory in the early years of the simulation (e.g., 1995–1999) over developing regions may contribute to GEOS-Chem's underestimation of tropospheric ozone trends. GEOS-Chem sensitivity simulations show that changes in global anthropogenic emission patterns, including the equatorward redistribution of surface emissions and the rapid increases in aircraft emissions, are the dominant factors contributing to tropospheric ozone trends by 0.5 Tg yr−1. In particular, we highlight the disproportionately large, but previously underappreciated, contribution of aircraft emissions to tropospheric ozone trends by 0.3 Tg yr−1, mainly due to aircraft emitting NOx in the mid-troposphere and upper troposphere where ozone production efficiency is high. Decreases in lower-stratospheric ozone and the stratosphere–troposphere flux in 1995–2017 contribute to an ozone decrease at mid-latitudes and high latitudes. We estimate the change in tropospheric ozone radiative impacts from 1995–1999 to 2013–2017 is +18.5 mW m−2, with 43.5 mW m−2 contributed by anthropogenic emission changes (20.5 mW m−2 alone by aircraft emissions), highlighting that the equatorward redistribution of emissions to areas with strong convection and the increase in aircraft emissions are effective for increasing tropospheric ozone's greenhouse effect.</p

    Sulfonated microporous polymer membranes with fast and selective ion transport for electrochemical energy conversion and storage

    Get PDF
    Membranes with fast and selective transport of protons and cations are required for a wide range of electrochemical energy conversion and storage devices, such as proton-exchange membrane (PEM) fuel cells and redox flow batteries. Here we report a new approach to designing solution-processable ion-selective polymer membranes with both intrinsic microporosity and ion-conductive functionality. This was achieved by synthesizing polymers with rigid and contorted backbones, which incorporate hydrophobic fluorinated and hydrophilic sulfonic acid functional groups, to produce membranes with negatively-charged subnanometer-sized confined ionic channels. The facilitated transport of protons and cations through these membranes, as well as high selectivity towards nanometer-sized redox-active molecules, enable efficient and stable operation of an aqueous alkaline quinone redox flow battery and a hydrogen PEM fuel cell. This membrane design strategy paves the way for producing a new-generation of ion-exchange membranes for electrochemical energy conversion and storage applications

    Intake of Non-steroidal Anti-inflammatory Drugs and the Risk of Prostate Cancer: A Meta-Analysis

    Get PDF
    Background: Epidemiological evidences regarding the association between the use of non-steroidal anti-inflammatory drugs (NSAIDs) and the risk of prostate cancer (PC) is still controversial. Therefore, we conducted a meta-analysis to explore the controversy that exists.Methods: Electronic databases including Medline, EMBASE, Web of Science, Cochrane Library, BIOSIS, Scopus, CBM, CNKI, WANFANG, and CQVIP were used to search for and identify eligible studies published until December 31, 2017. Pooled effect estimates for the relative risk (RR) were computed through fixed-effects or random-effects models as appropriate. Publication bias was evaluated by Egger's and Begg's tests and potential sources of heterogeneity were investigated in subgroup analyses.Results: A total of 43 observational studies were eligible for this meta-analysis. A protective effect was identified for the intake of any NSAIDs on the risk of PC (pooled RR = 0.89, 95% CI = 0.81–0.98). Moreover, the long-term intake of NSAIDs (≥5 years rather than ≥4 years) was associated with reduced PC incidence (pooled RR = 0.882, 95% CI = 0.785–0.991). Aspirin intake was also associated with a 7.0% risk reduction of PC (pooled RR = 0.93, 95% CI = 0.89–0.96). The inverse association became stronger for advanced PC and PC with a Gleason score ≥7 compared to the association with total PC. Interestingly, it was the daily dose (≥1 pill/day) rather than, long-term aspirin intake (≥4 or ≥5 years) that was associated with reduced PC incidence (pooled RR = 0.875, 95% CI = 0.792–0.967). The pooled effects for non-aspirin NSAIDs demonstrated no significantly adverse or beneficial effects on total PC, advanced PC, or PC with Gleason score ≥7, though all pooled RRs were &gt;1.Conclusions: Our findings suggested a protective effect of the intake of any NSAIDs on the risk of PC, especially in those who took the NSAIDs for a long period. Moreover, aspirin intake was also associated with a decreased risk of PC, and there was a dose related association between aspirin intake and the risk of PC, while no significant effects of long-term aspirin intake were found on the PC incidence
    • …
    corecore