400 research outputs found

    Spin-valley qubit in nanostructures of monolayer semiconductors: Optical control and hyperfine interaction

    Get PDF
    We investigate the optical control possibilities of spin-valley qubit carried by single electrons localized in nanostructures of monolayer TMDs, including small quantum dots formed by lateral heterojunction and charged impurities. The quantum controls are discussed when the confinement induces valley hybridization and when the valley hybridization is absent. We show that the bulk valley and spin optical selection rules can be inherited in different forms in the two scenarios, both of which allow the definition of spin-valley qubit with desired optical controllability. We also investigate nuclear spin induced decoherence and quantum control of electron-nuclear spin entanglement via intervalley terms of the hyperfine interaction. Optically controlled two-qubit operations in a single quantum dot are discussed.Comment: 17pages, 10 figure

    Transcriptome Analysis of Host-Associated Differentiation in \u3cem\u3eBemisia tabaci\u3c/em\u3e (Hemiptera: Aleyrodidae)

    Get PDF
    Host-associated differentiation is one of the driving forces behind the diversification of phytophagous insects. In this study, host induced transcriptomic differences were investigated in the sweetpotato whitefly Bemisia tabaci, an invasive agricultural pest worldwide. Comparative transcriptomic analyses using coding sequence (CDS), 5′ and 3′ untranslated regions (UTR) showed that sequence divergences between the original host plant, cabbage, and the derived hosts, including cotton, cucumber and tomato, were 0.11–0.14%, 0.19–0.26%, and 0.15–0.21%, respectively. In comparison to the derived hosts, 418 female and 303 male transcripts, respectively, were up-regulated in the original cabbage strain. Among them, 17 transcripts were consistently up-regulated in both female and male whiteflies originated from the cabbage host. Specifically, two ESTs annotated as Cathepsin B or Cathepsin B-like genes were significantly up-regulated in the original cabbage strain, representing a transcriptomic response to the dietary challenges imposed by the host shifting. Results from our transcriptome analysis, in conjunction with previous reports documenting the minor changes in their reproductive capacity, insecticide susceptibility, symbiotic composition and feeding behavior, suggest that the impact of host-associated differentiation in whiteflies is limited. Furthermore, it is unlikely the major factor contributing to their rapid range expansion/invasiveness

    Plant defense negates pathogen manipulation of vector behavior

    Get PDF
    1. Although many vector‐borne plant pathogens can alter vector behaviour to the pathogen\u27s benefit, how plants might counter such manipulation is unknown. 2. In the Tomato yellow leaf curl virus (‘TYLCV’)–Bemisia tabaci–tomato interaction, TYLCV‐mediated changes in Bemisia feeding improves viral uptake and transmission. We tested how jasmonic acid (‘JA’), a central regulator of plant antiherbivore defences, affected the ability of TYLCV to (A) manipulate Bemisia behaviour; and (B) infect plants. 3. Viruliferous Bemisia fed much more than virus‐free whiteflies on JA‐deficient plants, more than virus‐free whiteflies on controls, and similarly on high‐JA plants. 4. When TYLCV was transmitted via whiteflies, infection levels were lower in high‐JA plants relative to JA‐deficient and control plants. When TYLCV was transmitted via direct injection, JA‐overexpressed and JA‐deficient plants had similar infection levels. The JA‐mediated cessation of vector manipulation thus reduced infection and lessened pathogen impact. 5. The presence of the JA pathway in many plant species suggests that similar interactions may be widespread in nature

    A Case of Premature Ventricular Complexes from the Proximal Left Bundle Branch Successfully Ablated from the Right Coronary Cusp

    Get PDF
    Background: Premature ventricular complexes (PVCs) from the proximal left bundle branch (LBB) can be ablated in the left ventricular outflow tract but can easily damage normal conduction bundles. Here, we report a case of successful ablation of PVCs from the proximal LBB within the right coronary cusp (RCC). Case presentation: Our patient was a 70-year-old woman with PVCs from the proximal LBB that were successfully ablated via the RCC through radiofrequency catheter ablation with a 3D mapping system; she had a complication of incomplete right bundle branch block (RBBB) and remained asymptomatic during follow-up. Conclusion: The RCC provides an alternative approach for ablating PVCs originating from the proximal LBB, owing to the close relationship between the RCC and proximal LBB

    Effects of Plant Virus and Its Insect Vector on Encarsia Formosa, a Biocontrol Agent of Whiteflies

    Get PDF
    In this study, we investigated the tritrophic interactions among a persistently transmitted plant virus, Tomato yellow leaf curl virus (TYLCV), its insect vector, the sweetpotato whitefly Bemisia tabaci, and a parasitoid, Encarsia formosa Gahan, one of the most extensively used biological control agents. As an emerging invasive pest worldwide, the two most damaging whiteflies are B. tabaci B and Q cryptic species. On healthy tomato plants, parasitoid-induced mortality was significantly higher in B. tabaci B than in Q. In contrast, similar mortality levels of B and Q were observed on TYLCV-infected plants. A higher rate of parasitism was consistently observed in B, independent of the TYLCV infection. Similarly, the life history traits of E. formosa were influenced by both TYLCV and the two cryptic species of B. tabaci. Specifically, E. formosa parasitizing B had a greater adult longevity and shorter developmental time on healthy plants, whereas the parasitoids developing from Q has a greater adult longevity on TYLCV-infected plants. The emergence rate of E. formosa was unaffected by either B. tabaci cryptic species or the virus. These results suggest that the vector-borne pathogen can manipulate the host suitability of a parasitoid and hence the parasitoid-host interactions

    Natal Host Plants Can Alter Herbivore Competition

    Get PDF
    Interspecific competition between herbivores is widely recognized as an important determinant of community structure. Although researchers have identified a number of factors capable of altering competitive interactions, few studies have addressed the influence of neighboring plant species. If adaptation to/ epigenetic effects of an herbivore\u27s natal host plant alter its performance on other host plants, then interspecific herbivore interactions may play out differently in heterogeneous and homogenous plant communities. We tested wether the natal host plant of a whitefly population affected interactions between the Middleeast Asia Minor 1 (MEAM1) and Mediterranean (MED) cryptic species of the whitefly Bemisia tabaci by rearing the offspring of a cabbage-derived MEAM1 population and a poinsettia- derived MED population together on three different host plants: cotton, poinsettia, and cabbage. We found that MED dominated on poinsettia and that MEAM1 dominated on cabbage, results consistent with previous research. MED also dominated when reared with MEAM1 on cotton, however, a result at odds with multiple otherwise-similar studies that reared both species on the same natal plant. Our work provides evidence that natal plants affect competitive interactions on another plant species, and highlights the potential importance of neighboring plant species on herbivore community composition in agricultral systems

    The Regulation Landscape of MAPK Signaling Cascade for Thwarting \u3ci\u3eBacillus thuringiensis\u3c/i\u3e Infection in an Insect Host

    Get PDF
    Host-pathogen interactions are central components of ecological networks where the MAPK signaling pathways act as central hubs of these complex interactions. We have previously shown that an insect hormone modulated MAPK signaling cascade participates as a general switch to trans-regulate differential expression of diverse midgut genes in the diamondback moth, Plutella xylostella (L.) to cope with the insecticidal action of Cry1Ac toxin, produced by the entomopathogenic bacterium Bacillus thuringiensis (Bt). The relationship between topology and functions of this four-tiered phosphorylation signaling cascade, however, is an uncharted territory. Here, we carried out a genome-wide characterization of all the MAPK orthologs in P. xylostella to define their phylogenetic relationships and to confirm their evolutionary conserved modules. Results from quantitative phosphoproteomic analyses, combined with functional validations studies using specific inhibitors and dsRNAs lead us to establish a MAPK “road map”, where p38 and ERK MAPK signaling pathways, in large part, mount a resistance response against Bt toxins through regulating the differential expression of multiple Cry toxin receptors and their non-receptor paralogs in P. xylostella midgut. These data not only advance our understanding of host-pathogen interactions in agricultural pests, but also inform the future development of biopesticides that could suppress Cry resistance phenotypes

    Genome-Wide Analysis of ATP-Binding Cassette (ABC) Transporters in the Sweetpotato Whitefly, \u3cem\u3eBemisia tabaci\u3c/em\u3e

    Get PDF
    Background: ABC transporter superfamily is one of the largest and ubiquitous groups of proteins. Because of their role in detoxification, insect ABC transporters have gained more attention in recent years. In this study, we annotated ABC transporters from a newly sequenced sweetpotato whitefly genome. Bemisia tabaci Q biotype is an emerging global invasive species that has caused extensive damages to field crops as well as ornamental plants. Results: A total of 55 ABC transporters containing all eight described subfamilies (A to H) were identified in the B. tabaci Q genome, including 8 ABCAs, 3 ABCBs, 6 ABCCs, 2 ABCDs, 1 ABCE, 3 ABCFs, 23 ABCGs and 9 ABCHs. In comparison to other species, subfamilies G and H in both phloem- and blood-sucking arthropods are expanded. The temporal expression profiles of these 55 ABC transporters throughout B. tabaci developmental stages and their responses to imidacloprid, a neonicotinoid insecticide, were investigated using RNA-seq analysis. Furthermore, the mRNA expression of 24 ABC transporters (44% of the total) representing all eight subfamilies was confirmed by the quantitative real-time PCR (RT-qPCR). Furthermore, mRNA expression levels estimated by RT-qPCR and RNA-seq analyses were significantly correlated (r = 0.684, p \u3c 0.01). Conclusions: It is the first genome-wide analysis of the entire repertoire of ABC transporters in B. tabaci. The identification of these ABC transporters, their temporal expression profiles during B. tabaci development, and their response to a neonicotinoid insecticide lay the foundation for functional genomic understanding of their contribution to the invasiveness of B. tabaci
    corecore