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México, Cuernavaca, Morelos, Mexico

☯ These authors contributed equally to this work.

* guozhaojiang@caas.cn (ZG); zhangyoujun@caas.cn (YZ)

Abstract

Host-pathogen interactions are central components of ecological networks where the

MAPK signaling pathways act as central hubs of these complex interactions. We have previ-

ously shown that an insect hormone modulated MAPK signaling cascade participates as a

general switch to trans-regulate differential expression of diverse midgut genes in the dia-

mondback moth, Plutella xylostella (L.) to cope with the insecticidal action of Cry1Ac toxin,

produced by the entomopathogenic bacterium Bacillus thuringiensis (Bt). The relationship

between topology and functions of this four-tiered phosphorylation signaling cascade, how-

ever, is an uncharted territory. Here, we carried out a genome-wide characterization of all

the MAPK orthologs in P. xylostella to define their phylogenetic relationships and to confirm

their evolutionary conserved modules. Results from quantitative phosphoproteomic analy-

ses, combined with functional validations studies using specific inhibitors and dsRNAs lead

us to establish a MAPK “road map”, where p38 and ERK MAPK signaling pathways, in large

part, mount a resistance response against Bt toxins through regulating the differential

expression of multiple Cry toxin receptors and their non-receptor paralogs in P. xylostella

midgut. These data not only advance our understanding of host-pathogen interactions in

agricultural pests, but also inform the future development of biopesticides that could sup-

press Cry resistance phenotypes.

Author summary

The MAPK signaling pathways are pivotal for triggering host immunity against pathogens

during their intricate environmental interactions. Moreover, extensive studies have dem-

onstrated that dysfunctions in these pathways are associated with serious diseases in plants

and mammals. Despite its importance, the four-tiered signaling cascades of these signaling

pathways to exert functions still remain as a “black box” and have seldom been defined in
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insects, especially in non-model agricultural insect pests. Recently, we have discovered

that an insect hormone activated MAPK signaling cascade is pivotal to overcome the toxic

action of Bacillus thuringiensis (Bt) toxin thereby resulting in high-level Bt Cry1Ac resis-

tance in its insect host, the “super pest” diamondback moth, Plutella xylostella (L.). Here,

we further deciphered the three underlying activation routes for the complex four-tiered

MAPK signaling modules (including MAP4K4-Raf-MAP2K1-ERK, MAP4K4-MAP3K7-

MAP2K4-JNK and MAP4K4-MAP3K7-MAP2K6-p38) to orchestrate the differential

expression of multiple midgut genes and confer high-level resistance to the Bt Cry1Ac

toxin in P. xylostella. Our study provides the first comprehensive mechanistic insights

into the four-tiered MAPK signaling cascades involved in insect resistance to Bt toxins,

and also provides a platform for uncovering the topology and functions of these complex

intracellular immune signaling pathways in non-model agricultural insects.

Introduction

Plants and animals live in an environment teeming with multiple pathogens, and have thus

evolved strategies to withstand pathogen attack. Defense responses through activation of sig-

naling pathways, from pathogen recognition to the induction of immune responses, are crucial

in host-pathogen interactions [1,2]. Typically, the mitogen-activated protein kinase (MAPK)

signaling pathways play crucial roles in the arms race between host and pathogen [3]. The

MAPK signaling pathways are evolutionarily conserved modules in all eukaryotes and are

characterized by multi-tiered phosphorylation cascades composed of MAPKKK kinase

(MAP4K), MAPKK kinase (MAP3K), MAPK kinase (MAP2K) and MAPK [4,5]. The contri-

bution of MAPK signaling cascades in controlling cellular responses to a wide assortment of

stimuli and in regulating cellular processes from gene expression to cell death is well estab-

lished [6].

Host-pathogen interactions are not only restricted to plants and mammals. Insects, the larg-

est group of animals on earth, can be infected by a wide range of pathogens, including bacteria,

fungi, viruses and parasites [7]. Bacillus thuringiensis (Bt), a gram-positive entomopathogenic

bacterium, produces diverse pore-forming toxins (PFTs) such as Cry toxins as virulence fac-

tors to specifically kill their insect hosts [8], in a fashion similar to some human pathogenic

bacteria [9]. Biopesticide formulations and transgenic crops based on Bt insecticidal toxins are

widely adopted in pest control worldwide, providing tremendous ecological and socio-eco-

nomic benefits [10–17]. However, insect pests have developed intricate strategies to counteract

the detrimental effects caused by Bt toxins, thus, defining these molecular mechanisms evolved

in insect hosts to counteract Bt infection is pivotal to establish successful strategies to counter

insect resistance to Bt toxins [18–23].

The mode of action of Bt Cry toxins involves a complex multi-step process in which toxin-

receptor interactions are crucial [24]. Alterations in midgut receptors disrupting these binding

interactions with Cry toxins generally correlate with high levels of resistance in diverse insect

pests [22,25]. The diamondback moth, Plutella xylostella (L.), is a cosmopolitan pest that was

the first insect recognized to develop field-evolved resistance to Bt biopesticides [26,27]. The

release of its whole genome sequence [28] has made it an excellent model to define the molecu-

lar basis of host-pathogen interactions. Previously, field-evolved resistance to the Bt Cry1Ac

toxin in P. xylostella was associated with both a cis-mutation in an ABC transporter gene [29]

and a trans-regulatory mechanism involving a hormone activated MAPK signaling pathway

that altered the expression of midgut genes encoding glycosyl-phosphatidylinositol (GPI)-
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anchored alkaline phosphatase (ALP), and aminopeptidase N (APN) proteins as well as trans-

membrane ABC transporter proteins [30–34]. The fact that resistance in P. xylostella has been

linked with multiple and different mechanisms has motivated us to further gain a clear under-

standing of the underlying interactions. In this work, we decided to further analyze the role of

MAPK signaling pathways in the developed resistance to Bt toxins [35].

The MAPK signaling pathways have been extensively studied in plants and mammals

[5,36]. In particular, it was previously shown that the MAPK signaling pathways can be respon-

sive to diverse PFTs in mammals, Drosophila and Caenorhabditis elegans [9,37,38]. Moreover, it

was also shown that these pathways also play important roles in the response against Bt Cry tox-

ins in insects [30,32,39–41]. However, the full repertoire and function of this immune defensive

response in insects, particularly in non-model insects of agricultural relevance such as P. xylos-
tella, is currently not deeply understood. In this study, we conducted a genome-wide identifica-

tion and characterization of the four-tiered MAPK signaling cascades in P. xylostella. We

uncovered their topological structure and functional mechanism of the cascades involved in

directing the expression of downstream midgut genes repertoire leading to effective Cry1Ac

resistance in the absence of fitness costs. The model that resulted from this study indicated a

clear possibility of developing products that could suppress the resistance phenotype.

Results

Genome-wide characterization of MAPK kinases in P. xylostella and other

arthropods

Our previous studies have confirmed a crucial role of the MAPK signaling cascades in Cry1Ac

resistance in P. xylostella [30,32], in this study, the potential members of these cascades were

further identified in P. xylostella (S1 Table) and in 10 other arthropod species (S2 Table).

Using currently available transcriptome and genome databases, a total of 17 MAPK orthologs

in P. xylostella were found in silico and their genes were cloned (S1 Table, S1A Fig). These

genes displayed polymorphism in both sequence length and exon number and were distrib-

uted between different scaffolds of the P. xylostella genome (S1B and S2 Figs).

Similar MAPK orthologs were found among other arthropods (Fig 1A) and the analysis of

the non-synonymous/synonymous mutation ratio (Ka/Ks values) of each gene allowed us to

estimate values between 0 and 0.25 implying that these genes were under purifying or stabiliz-

ing selection (Fig 1B), and suggesting that these signaling pathways are evolutionary conserved

modules that have diverged very little among the analyzed arthropods. In the hierarchical fash-

ion of MAPK cascades, MAP3K exhibits higher diversity, not only in distribution (Fig 1A) but

also in their protein sequences (Figs 1C and S3), when compared with MAP4K, MAP2K and

MAPK (Figs 1C and S3). We also found that themos gene is missing in the 15 lepidopteran

insects analyzed including P. xylostella (S4 Fig). The TAO kinase can phosphorylate MAP2Ks,

a hallmark of a MAP3K, but the primary sequence of TAO is more closely related to MAP4K

in the phylogenetic tree (Fig 1C). The lack of a close relationship between TAO and other

MAP3Ks was previously observed [42]. In the MAPK group, MAPK15 was absent in four of

the 15 species analyzed (Fig 1A), these data and the low protein sequence similarity among

MAPK15 and other MAPKs (Figs 1C and S3) suggest that MAPK15 may not be a classical

MAPK.

Expression atlas of the MAPK cascade genes in P. xylostella
Currently available RNA-seq data downloaded from Sequence Read Archives (SRA) of Gen-

Bank allowed us to search for these sequences and found out that these proteins of MAPK
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cascade pathways are expressed in all four developmental stages of P. xylostella, and are fairly

evenly distributed in six different adult tissues. Also that PxMAP4K4 and Pxp38 exhibited

higher expression levels than the others during fungal infection (S5A–S5D Fig).

Then, we further analyzed the relative expression levels of Pxp38, PxJNK and PxERK genes

by qPCR in the susceptible DBM1Ac-S strain. As expected, their expression was detected in all

Fig 1. Genome-wide identification and characterization of MAPK cascade genes in P. xylostella. (A) Distribution of MAPK cascade genes amongH. sapiens, C.

elegans and 13 arthropod species. (B) The Ka/Ks values of MAPKs from 13 arthropod species. (C) Phylogenetic tree of MAPKs fromH. sapiens, C. elegans and 13

arthropod species. MAP3Ks include three clades: Raf, MEKK and TAO. (D) Heatmap showing the relative expression levels of MAPK cascade genes in midgut tissues of

fourth-instar P. xylostella larvae from the different strains as determined by qPCR analysis. The color of each rectangle denotes the relative expression level of each gene

expressed as mean of fold changes relative to the control DBM1Ac-S larvae. Red and green colors indicate up- and down-regulation respectively, while yellow indicates no

significant expression variation. (E and F) Western blot analyzes of both total protein and protein phosphorylation levels of p38, JNK and ERK in midgut tissues of

fourth-instar larvae from the different strains. The quantification (F) of representative blots (E) using ImageJ 1.51 from three biological replicates is shown. All the control

larval samples used in qPCR and western blot analyses (Panels D-F) were without Cry1Ac exposure to quantify the basal expression of MAPK cascade genes.

https://doi.org/10.1371/journal.ppat.1009917.g001
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the developmental stages, and in all tested tissues of fourth-instar larvae from DBM1Ac-S

strain (S6 Fig). More variation was observed between developmental stages than between tis-

sues. When we compared the expression of the 17 MAPK genes mentioned above among four

Cry1Ac resistant strains and the susceptible one, the transcript levels of most of the selected

MAPK cascade genes (especially PxMAP4K4, PxRaf, Pxp38, PxERK) were up-regulated in the

midgut tissues of all resistant strains compared to the susceptible strain DBM1Ac-S (Fig 1D).

With evidence that genes encoding these components of the signaling cascades were up-regu-

lated in the resistant strains, we decided to use western blot assays to analyze the total protein

expression and the phosphorylation levels of the three key downstream MAPK of the different

pathways (p38, JNK and ERK) (Fig 1E). In the Cry1Ac resistant strains, the relative protein

abundance of p38, JNK and ERK was higher than in the susceptible strain, moreover, their

phosphorylated protein levels were also markedly increased (P < 0.05; Duncan’s test; n = 3)

(Fig 1E and 1F).

The MAPK cascades associated with Cry1Ac resistance in P. xylostella
MAP4K4 was previously shown to be involved in the mechanism of resistance to Bt Cry1Ac

toxin in the P. xylostella strain NIL-R [30,32] and the above data suggested a role for the p38,

JNK and ERK MAPKs. Here, we aimed to further identify components of the phosphorylation

cascade that may be associated with this resistance phenotype. Thus, global quantitative phos-

phoproteomic analyses in fourth-instar larvae from both susceptible DBM1Ac-S and its near-

isogenic resistant NIL-R strains were performed (Fig 2A). In total, 1652 phosphorylated pep-

tides derived from 846 proteins were identified. We found that 716 phospho-peptides from

547 proteins were quantifiable (S5 Table), revealing that 115 phospho-peptides increased and

75 phospho-peptides decreased in NIL-R compared to DBM1Ac-S (Fig 2B). GO and KEGG

analyses indicated that these differentially phosphorylated proteins were involved in a number

of different metabolic processes and signaling pathways (Fig 2C and 2D).

Regarding the MAPK components identified as differentially phosphorylated in the NIL-R

strain, we found that MAP3K7, TAO, MAP2K6, ERK and p38 showed increased phosphoryla-

tion in the resistant strain (Fig 2B), but that the phosphorylation level of MAP4K3, MAP3K4,

MAP3K12, MAP3K15 and MAP2K7 did not change between the two strains (S5 Table). To

identify the potential downstream effectors of these kinases we built a connectivity network of

differentially phosphorylated proteins to illustrate the possible interactions among MAPK

members and other phospho-proteins (Fig 2E).

Effect of MAPK silencing on host midgut gene expression and Cry1Ac

susceptibility

Given the likelihood that a common resistance mechanism exists in the four resistant strains

[30,32], we determined whether or not there was a causal link between increased expression/

phosphorylation of these key kinases and the observed resistance phenotypes. Thus, RNAi was

performed on the NIL-R strain to silence the expression of those MAPK cascade genes shown

to be differentially phosphorylated in the phosphoproteome screen (Fig 2B) as well as others

identified as being overexpressed in all the resistant strains (Fig 1D). qPCR demonstrated that

RNAi selectively reduced the expression of each target gene (Fig 3A). The effect of RNAi of

these 11 target kinase genes on the phosphorylation of the downstream effector proteins p38,

ERK and JNK was determined by western blot analysis of each silenced larva. These data indi-

cated that MAP2K6 was involved in the activation of p38; MAP2K1 in the activation of ERK;

and that both MAP2K4 and MAP2K7 could activate JNK (Figs 3B and 3C and S7). Upstream

of these MAPKs, Raf was involved in ERK activation, TAO in JNK activation and MAP3K7 in
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both p38 and JNK activation. Finally, the data confirmed that MAP4K4 was involved in the

activation of all three key MAPKs.

Individual and combinational RNAi was conducted to silence the expression of key MAPK

cascade genes and qPCR were undertaken to establish the effect of silencing these kinases on

the expression of those midgut genes related to Cry1Ac resistance in the NIL-R strain (Fig

3D). The results showed that the individual silencing of most of the MAPKs analyzed induced

changes in expression of the selected midgut proteins (ALP, APNs and ABC transporters) (Fig

3D). The exceptions were TAO and MAP2K7, since RNAi silencing of these MAPK cascade

genes had little or no effect on the expression of the analyzed ALP, APNs or ABC transporters

(Fig 3D). Using these expression data, we performed hierarchical clustering and principal

component analyses (PCA) (Fig 3E) to establish the potential signaling pathways. This analysis

was consistent with that described above (Fig 3B and 3C), indicating that MAP4K4 silencing

gave similar results as silencing the three key MAPKs (p38, JNK and ERK). Links were also

Fig 2. Quantitative phosphoproteomic profiling for differentially phosphorylated proteins and their interaction relationships in Cry1Ac susceptible and resistant

P. xylostella strains. (A) Workflow of the experimental procedure for iTRAQ global phosphoproteome analysis. All the control larval samples used in phosphoproteome

analysis were without Cry1Ac exposure to detect basal differentially phosphorylated proteins between resistant and susceptible strains. (B) Volcano plot of the abundance

changes of qualified phosphoproteins in DBM1Ac-S versus NIL-R strains. Each dot represents a phospho-peptide. Average phospho-peptide expression ratio of three

biological replicates (log 2 transformed) was plotted against p-value by t-test (−log 10 transformed). Cutoff of P = 0.05 and 1.5-fold change were denoted by green and red

lines, respectively. Some of the significantly up-regulated MAPK cascade kinases (P� 0.05, fold change� 1.5) are highlighted. (C) GO term enrichment for the

significantly changed phosphoproteins. (D) KEGG pathway enrichment for the significantly changed phosphoproteins. Enriched KEGG pathways are visualized as a

word cloud. The size of the word corresponds to the gene abundance in that category. (E) Connectivity network of significantly changed phosphoproteins. The original

protein-protein interaction data comes from the STRING database. The size of the circles denotes the frequency of interactions. The thickness of the lines denotes the

score of the interactions. Interactions among MAPK cascade kinases are shown by red lines, while interactions among MAPK cascade kinases and other proteins are

shown by dark grey lines, all other interactions are shown in light grey lines.

https://doi.org/10.1371/journal.ppat.1009917.g002
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Fig 3. Identification of the MAPK cascades involved in Cry1Ac resistance. (A) The relative expression of different MAPK genes at 48 h post-RNAi. The color-coded

expression data is calculated relative to the transcript level for each gene at time 0 h. (B) Western blot analysis of total protein and protein phosphorylation levels of p38,

JNK and ERK in resistant NIL-R larvae microinjected with dsRNA targeting MAP2Ks, MAP3Ks or MAP4K. Representative blots are shown. The β-actin protein was

analyzed as an internal loading control. (C) Quantification of western blots using ImageJ 1.51 from three biological replicates. �P< 0.05 and ��P< 0.01 by Duncan’s test

compared to the controls. (D) Hierarchical clustering of RNAi treated strains analyzing the expression level of resistance-related midgut genes (ALP, APNs and ABC

transporters genes). The expression data are from three biological replicates and four technical repeats. (E) Principal component analysis (PCA) of the indicated RNAi-

treated strains analyzing the expression level of the target resistance-related midgut genes. (F) Susceptibility to 1000 mg/L Bt Cry1Ac protoxin of NIL-R larvae after RNAi.

Data in figures are means and standard errors from three biological replicates. �P< 0.05, ��P< 0.01 and ���P< 0.001 by Duncan’s test compared to the controls. (G)

Schematic representation of the gene regulation landscape of midgut proteins, Cry1Ac-receptors and non-receptor paralogs, involved in Bt Cry1Ac resistance by the

activated MAPK signaling cascade pathways. The target downstream midgut resistance-related genes with red color indicated that they were up-regulated, while those

with blue color indicated that they were down-regulated.

https://doi.org/10.1371/journal.ppat.1009917.g003
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suggested between MAP3K7 and p38+JNK; between Raf, MAP2K1 and ERK; between

MAP2K4 and JNK and between MAP2K6 and p38.

Based on our understanding of the role of the selected midgut proteins (ALP, APNs and

ABC transporters) in the mechanism of action of Cry1Ac against P. xylostella [30–33], we

would expect that the observed expression differences in Fig 3D would correlate with changes

in the susceptibility of the silenced larvae to this toxin. To test this hypothesis, bioassays were

done on strains in which the different kinases were silenced by RNAi (Fig 3F). The data con-

firmed that silencing the expression of TAO or MAP2K7 did not alter Cry1Ac susceptibility,

which is consistent with the fact that silencing these proteins had little effect on the expression

of the midgut proteins of interest. In contrast, reducing the expression of other nine kinases

resulted in increased susceptibility of the resistant strain to a greater or lesser extent, support-

ing the concept that toxin susceptibility was directly related to the expression levels of these

midgut Cry1Ac receptors. Our data indicate that among the three key MAPK pathways, the

JNK pathway was less important to modulate expression of midgut Cry1Ac receptors than the

p38 or ERK pathways (Fig 3F). Our previous work suggested that reduced expression of some

midgut functional receptors in resistant insects was associated with increased expression of

functional non-receptor paralogs to minimize fitness costs [30,32]. The results presented here

agree with those previous data since functional Cry1Ac receptors (PxmALP, PxAPN1,

PxAPN3a, PxABCB1, PxABCC2, PxABCC3 and PxABCG1) were all up-regulated in the

RNAi-silenced strains, whereas the non-receptor paralogs (PxAPN5, PxAPN6 and PxABCC1)

were all down-regulated. With these data, we were able to delineate a diagram for MAPK sig-

naling pathways in the Bt Cry1Ac resistance mechanism in P. xylostella (Fig 3G).

Modulating susceptibility to Cry1Ac toxin with MAPK inhibitors

According to the proposed MAPK signaling pathways described above, we hypothesized that

blocking activation of the signaling cascade with specific inhibitors should alter the susceptibil-

ity of the resistant NIL-R strain. This was tested by using commercially available inhibitors of

p38, JNK and ERK. The use of phosphorylation-specific antibodies confirmed the specific

activity of the selected inhibitors, both when applied individually or in combination (Figs 4A,

4B, S8 and S9). Bioassays confirmed that blocking these pathways in the resistant NIL-R strain

with inhibitors resulted in a significant increase in the susceptibility to Cry1Ac toxin (Fig 4C).

As with the RNAi experiments, inhibition of JNK action had less effect than interfering with

p38 or ERK action. Gene expression analysis was finally used to establish the effect of the

inhibitors on expression of the selected midgut genes (Fig 4D and 4E). The results were consis-

tent with those obtained in the RNAi experiments supporting the roadmap shown in Fig 3G.

Discussion

Various organisms including plants, insects and mammals, are continuously engaged in a co-

evolutionary struggle against their pathogens. The outcomes of host-pathogen interactions are

essential for human activities, as they can have significant impacts on healthcare and agricul-

tural systems [2,43]. In the ongoing battle between hosts and pathogens, the hosts have adapted

their capacity to establish immunity strategies to defend against pathogen infections, and path-

ogens have developed strategies to overcome these defense responses [1,2]. MAPK signaling

cascades have proved to be hubs for triggering diverse immune responses in these host-patho-

gen interactions [3].

In mammals, it is well established that after recognizing conserved microbial elicitors called

pathogen-associated molecular patterns (PAMPs), pattern recognition receptors (PRRs) can

activate MAPK signaling pathways, which are part of both innate and adaptive immune

PLOS PATHOGENS The MAPK “road map” to overcome Bt toxin in diamondback moth

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009917 September 8, 2021 8 / 22

https://doi.org/10.1371/journal.ppat.1009917


responses systems [3,44]. After the perception of PAMPs, plants can also activate MAPK sig-

naling cascades to confer resistance to both fungal and bacterial pathogens [45]. The work

reported here, along with previous published results [30,32], demonstrate that MAPK

Fig 4. Functional analysis of p38, JNK and ERK MAPK pathways after treatment with specific inhibitors, in Bt Cry1Ac susceptibility of resistant P. xylostella.

(A) Western blot analysis of both total protein and protein phosphorylation levels of p38, JNK and ERK in NIL-R larvae pretreated with specific inhibitors. The β-actin

protein was analyzed as an internal loading control. (B) The quantification of representative blots (A) using ImageJ 1.51 from three biological replicates. ��P< 0.01 by

Duncan’s test compared to the control. (C) Susceptibility to 1000 mg/L Bt Cry1Ac protoxin in NIL-R larvae treated with the different inhibitors. Data in figures are

means and standard errors from three biological replicates. �P< 0.05, ��P< 0.01 and ���P< 0.001 by Duncan’s test compared to the control. (D) qPCR analysis of

Cry1Ac resistance-related genes (ALP, APNs and ABC transporters) in midgut tissues of NIL-R larvae pretreated with the indicated inhibitors. The expression levels

were transformed to log2 values. All the expression data are from three biological replicates and four technical repeats. (E) Schematic summaries of the regulation

effects of p38, JNK and ERK pathways on Cry1Ac resistance-related genes. The thickness of each line is proportional to the strength of the regulation effect. Only

regulation effects with significant differences between inhibitor and buffer are shown. The target midgut resistance-related genes with red color indicated that they

were up-regulated, while those with blue color indicated that they were down-regulated.

https://doi.org/10.1371/journal.ppat.1009917.g004
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signaling cascades are activated at the levels of expression and phosphorylation in different Bt

toxin resistant populations of insects and nematodes [39,40,46,47]. In mammalian cells,

MAPK signaling pathways were shown to be activated by, and involved in the defense against,

numerous bacterial pore-forming toxins [9]. Collectively, these examples indicate that the acti-

vation of MAPK signaling cascades as a defense strategy against pathogens or their virulence

factors is evolutionarily conserved among diverse organisms.

Various pathogens manipulate MAPK signaling cascades in order to circumvent, suppress

or modify immune responses to facilitate their infection [3]. Effectors produced by pathogens,

injected into plant or animal cells, have acetyltransferase or phosphothreonine lyase activities

that suppress MAPK signaling via blocking phosphorylation of kinases [48,49]. For example,

pneumolysin (PLY), a pore-forming toxin produced by Streptococcus pneumoniae, hijacks a

host factor to inhibit p38 signaling pathway and promote bacterial invasion [9]. While interfer-

ing with MAPK signaling cascades is a feature of some pathogens, there are others such as

human immunodeficiency virus and silkworm nucleopolyhedrovirus that intentionally trigger

a MAPK signaling pathway to enhance their replication and infection [50,51].

Here we demonstrated the role and topology of the MAPK cascades in defending P. xylos-
tella against Bt Cry toxins action (Fig 5). We have recently shown that increased titers of

20-hydroxyecdysone (20E) and juvenile hormone (JH) are involved in transducing the

upstream signal triggered by the toxin action via MAP4K4 [32] that activated downstream

effector responses through three separate MAPK pathways (ERK, JNK and p38), finally result-

ing in the down-regulation of Cry toxin midgut receptors (ALP, APN1, APN3a, ABCB1,

ABCC2, ABCC3 and ABCG1) and the concurrent up-regulation of their non-receptor para-

logs (APN5, APN6 and ABCC1), finally suppressing the toxin activity and binding to confer

Bt Cry1Ac resistance while retaining cell homeostasis in P. xylostella [30–34]. Recently, we

found that the MAPK-directed activation of the transcription factor CREB leads to P450-medi-

ated imidacloprid resistance in Bemisia tabaci [52]. Similarly, it is expected that specific tran-

scription factors (TFs), like Jun and Antp, could serve as downstream effectors and provide a

link between the MAPK cascades and expression of specific midgut genes [53–55]. Interest-

ingly, the p38 and ERK signaling pathways selectively regulate certain midgut genes but not

others. These regulated midgut genes might contain similar transcription factor binding sites

(TFBSs) that can be recognized and regulated by a key MAPK-responsive TF, while other

unregulated ones contain distinct functional TFBSs in their promoter regions responding to

specific MAPK-responsive TFs. Further studies to identify the functional TFBSs of these mid-

gut genes and the corresponding MAPK-responsive TFs involved in Cry1Ac resistance mecha-

nism in P. xylostella are warranted.

Given that the gut tissue is in constant contact with large numbers of pathogens, it must act

as a physical barrier armed with efficient systems for pathogen control and cellular homeosta-

sis [7,56]. In the gut defense to pathogens, MAPK signaling pathways have been shown to reg-

ulate not only the local production of reactive oxygen species (ROS) to resist pathogen growth

[57], but also gut epithelium regeneration to endure the pathogenesis of infection [58]. With

the MAPK cascades being involved in a wide variety of pathogen defense/immune processes, it

remains to be established exactly how these particular pathways operate and whether particular

scaffold proteins are involved in their signal transduction [59–61].

The fact that there is redundancy within the MAPK signaling pathways (i.e. the involve-

ment of two MAP3Ks and three MAP2K/MAPKs) helps to enhance the biological robustness

of the response [62–64]. Functional overlap within the MAPK cascades was also previously

observed for the p38 and JNK pathways in the nematode defense response against Cry5B toxin

action [47]. MAPK cascade components such as TAO and MAP2K7 appear to have little or no

role in Cry1Ac resistance response but potentially. Although TAO shows increased
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phosphorylation in the resistant strain this could be through a pathway involving MAP4K4

but unrelated to resistance. Our data show that the three MAPK signaling pathways are chan-

neled through MAP4K4. Although this introduces a point of fragility into the network, it also

provides a potential target to improve pest control. Given the pivotal role that this kinase plays

in the defense against Bt Cry toxins, developing products that impair its function, like RNAi-

based pest control strategies or MAP4K4-specific kinase inhibitors, could be used to synergize

the action of the toxin and delay the evolution of insect resistance to Cry toxins.

In summary, our data clearly demonstrate that the ERK and p38 pathways play dominant

roles in regulating resistance to Bt Cry1Ac toxin in P. xylostella, while the JNK pathway plays a

secondary role. Global quantitative phosphoproteomic analyses provided clues for identifying

crucial MAPK-responsive proteins, such as TFs and scaffold proteins, which are important for

signal transduction in Bt Cry1Ac resistance. Moreover, the delineated MAPK roadmap based

on the RNAi and inhibitor assays could help inform the development of products to better

control this pest.

Fig 5. Schematic representation of the MAPK “road map” for overcoming Bt toxin action in P. xylostella. Upon

exposure to Bt Cry1Ac toxin, susceptible P. xylostella larvae are killed, whereas with low doses, or in resistant larvae,

increased levels of insect hormones (20E and JH) can activate the MAPK signaling cascades to regulate differential

expression of multiple midgut genes resulting in larval survival [30,32]. For the road map of MAPK signaling cascades

three degenerate, four-tiered, branched signaling pathways, including MAP4K4-Raf-MAP2K1-ERK,

MAP4K4-MAP3K7-MAP2K4-JNK and MAP4K4-MAP3K7-MAP2K6-p38, form the modules that regulate this

response.

https://doi.org/10.1371/journal.ppat.1009917.g005
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Materials and methods

Insect strains

The five P. xylostella strains used in this study have been described in detail elsewhere [65–68].

Briefly, a highly inbred laboratory P. xylostella strain DBM1Ac-S was used as the susceptible

strain, and was maintained in laboratory conditions without exposure to any Bt toxins or

chemical pesticides. Compared to the susceptible DBM1Ac-S strain, the DBM1Ac-R, NIL-R,

and SZ-R strains have respectively evolved about 3500-, 4000-, and 450-fold resistance to

Cry1Ac protoxin, and the SH-R strain has developed approximately 1900-fold resistance to Bt

var. kurstaki (Btk) formulation. The field-evolved or laboratory-selected Cry1Ac-resistance in

these four independent P. xylostella strains have a similar mechanism involving MAPK-medi-

ated differential expression of PxmALP, PxABCB1, PxABCC1-3 and PxABCG1 genes

[30,31,33]. These P. xylostella strains were fed on Jing Feng No. 1 cabbage (Brassica oleracea
var. capitata) at 25˚C with 65% relative humidity (RH) and a 16:8 (light:dark) photoperiod.

Adults were supplied with a 10% honey/water solution.

Toxin preparation and bioassay

As described previously [65,69], the Cry1Ac protoxin was prepared from Btk strain HD-73,

and the toxicity of Cry1Ac protoxin to P. xylostella larvae was determined in 72 h leaf-dip bio-

assays. Briefly, ten third-instar P. xylostella larvae were used for each of seven toxin concentra-

tions and bioassays were repeated four times. Toxicity bioassay results showed that the

resistance ratios of the DBM1Ac-R, NIL-R and SZ-R strains to Cry1Ac protoxin was approxi-

mately 3500-, 4000-, and 450-fold that of the DBM1Ac-S strain, respectively, and the resistance

ratio of the SH-R strain to the Btk formulation was approximately 1900-fold that of the

DBM1Ac-S strain.

Quantitative phosphoproteomic analysis

To analyze the phosphorylated proteins in P. xylostella, the midgut tissue was dissected from

fourth-instar larvae of DBM1Ac-S and NIL-R strains and three biological replicates were pre-

pared for each strain. These midgut tissues were homogenized in buffer (40 mM Tris-HCl, 7

M urea, 2 M thiourea, 1% DTT, 1 mM EDTA) supplemented with the EDTA-Free Complete

Protease Inhibitor Cocktail (Roche) and the PhosSTOP Phosphatase Inhibitor Cocktail

(Roche) according to the manufacturer’s instruction, and the homogenates were then soni-

cated. Lysates were collected by centrifugation at 18000 × g for 40 min at 4˚C. The concentra-

tions of midgut proteins were estimated by using the Bradford assay (Biomed). Ammonium

bicarbonate was added to 100 μg protein sample to a final concentration of 50 mM. The mix-

tures were treated with 10 mM DTT at 56˚C for 1 h and then alkylated with 55 mM iodoaceta-

mide at room temperature for 40 min in darkness. Trypsin was added to protein samples at a

ratio of 1:50 (enzyme-to-substrate, w/w) and incubated overnight at 37˚C.

The peptide mixtures were labeled with iTRAQ Reagent-8Plex Multiplex Kit (Applied Bio-

systems) following the manufacturer’s instruction. Three DBM1Ac-S samples were labeled

with reagent 118, 119 and 121, while three NIL-R samples were labeled with reagent 114, 116

and 117. Subsequently, phospho-peptides were enriched by titanium dioxide (TiO2) beads.

TiO2 beads were preincubated in 200 μl acetonitrile (ACN) and then equilibrated in 200 μl

loading buffer (80% ACN, 5% TFA, saturated by glutamic acid). The mixture of labeled phos-

pho-peptides were suspended in 200 μl loading buffer and added to TiO2 beads. The samples

were incubated with gentle rotation. After incubation, the beads were washed twice with wash-

ing buffer (80% ACN, 5% TFA). The bound phospho-peptides were eluted with 100 μl elution
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buffer (15% ammonium hydroxide) three times. Finally, the eluates were collected, dried and

prepared for further identification.

Phospho-peptides were then injected into an Eksigent nanoLC 425 system (Applied Biosys-

tems) with a C18 trap column (3 m, 0.10 × 20 mm) and a C18 analytical column (5 m,

0.75 × 150 mm). The mobile phase buffer consisted of buffer A (0.1% formic acid) and buffer

B (0.1% formic acid in 80% acetonitrile) under a gradient (5% to 80% of buffer B for 100 min,

80% of buffer B for 10 min, 80% to 5% of buffer B for 0.1 min) at 300 nl/min flow rate. The

Eksigent nanoLC 425 system was equipped with a Q-Exactive mass spectrometer (Thermo

Fisher Scientific). The mass spectrum was obtained in a data-dependent mode. Full scan MS

were performed fromm/z 350 to 1,750 at a resolution of 70,000 followed by MS/MS scan.

AGC target values of MS and MS/MS scans were 3e6 and 2e5, respectively. The dynamic exclu-

sion window was 25 s, while the precursor isolation window wasm/z 2.0 with normalized colli-

sion energy of 28.

The MS/MS raw data were processed using Proteome Discoverer 2.1 (Thermo Fisher Scien-

tific), and subsequently, a database search was conducted using Mascot with an amino acid

sequence database generated from the current available transcriptome databases from P. xylos-
tella different strains, tissues and ages. The following search criteria were applied: trypsin

digestion, up to 2 missed cleavages; carbamidomethyl (C), iTRAQ8plex (N-term) and

iTRAQ8plex (K) as fixed modifications; oxidation (M) and phosphorylation (pS/T/Y) as vari-

able modifications; a peptide mass tolerance of 20 ppm, a fragment mass tolerance of 0.1 Da.

The false discovery rate of peptide identification was set to 1%. A filter of significantly changed

phospho-peptides or proteins were based on Student’s t-test (P� 0.05) and fold change (� 1.5

or� 0.6667). The final identified phosphorylated polypeptide sequences were listed in S5

Table.

Gene Ontology (GO) enrichment analyses and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analyses were performed in the Gene Ontology resource (http://

geneontology.org) and KEGG database (http://www.kegg.jp/), respectively. Protein-protein

interaction networks were generated using STRING database (https://string-db.org/) with dif-

ferentially expressed phosphoproteins and visualized in the Cytoscape software (http://www.

cytoscape.org/).

RNA extraction and cDNA synthesis

The midgut tissues of fourth-instar P. xylostella larvae were dissected and homogenized in

TRIzol reagent (Invitrogen). Total RNA was extracted following the manufacturer’s protocol.

After being quantified with a NanoDrop 2000c spectrophotometer (Thermo Fisher Scientific),

the first-strand cDNA was synthesized using 5 μg of total RNA with the PrimeScript II 1st

strand cDNA Synthesis Kit (TaKaRa) for gene cloning and using 1 μg of total RNA with the

PrimeScript RT kit (containing gDNA Eraser, Perfect Real Time) (TaKaRa) for qPCR detec-

tion. The synthesized first-strand cDNA samples were stored at -20˚C until used.

MAPK identification and gene cloning

To conduct the genome-wide MAPK gene analysis in P. xylostella (S1 Table), the MAPK

orthologs ofHomo sapiens, Caenorhabditis elegans, Drosophila melanogaster and Anopheles
gambiae [70] were retrieved from GenBank database (http://www.ncbi.nlm.nih.gov) (S2

Table). These genes were used as queries to screen the Diamondback moth Genome Database

(DBM-DB: http://iae.fafu.edu.cn/DBM/). The identified MAPK sequences were further in sil-
ico corrected by the current GenBank annotation and available P. xylostella transcriptome

databases. Based on the corrected nucleotide sequences of P. xylostellaMAPKs, we designed
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gene-specific primers with the Primer Premier 5.0 software (Premier Biosoft) to clone their

full-length cDNA sequences (S3 Table). PCR reactions (25 μl) were performed in an S1000

Thermal Cycler PCR system (BioRad) using LA Taq polymerase (TaKaRa). The PCR program

was as follows: 35 cycles of 94˚C for 30 s, 50–60˚C (depending on the primers) for 45 s and

72˚C for 1–4 min based on the PCR product size; and a final cycle of 72˚C for 10 min. The

PCR amplicons with expected size were excised from 1.5% agarose gel and purified using the

DNA Purification Kit (CWBIO), and further cloned into pEASY-T5 (Transgen) before intro-

duction into Escherichia coli TOP10 competent cells (Transgen) for DNA sequencing. The

final cloned full-length cDNA sequences of P. xylostellaMAPK cascade genes were deposited

in the GenBank database (Accession nos. MN211342-MN211357). The deduced MAPK pro-

tein sequences were obtained by ExPASy translate tool Translate (http://web.expasy.org/

translate/), and submitted to NCBI Batch CD-search database (https://www.ncbi.nlm.nih.gov/

Structure/bwrpsb/bwrpsb.cgi) to identify potential MAPK kinase domains. The isoelectric

point (pI) and molecular weight (Mw) of these MAPK proteins were calculated in the ExPASy

proteomics tool Compute pI/Mw (http://ca.expasy.org/tools/pi_tool.html).

Phylogenetic analysis

We used amino acid sequences of MAPK orthologs with complete kinase domain from H.

sapiens, C. elegans and 13 arthropod species (S2 Table) to construct a high-quality unrooted

phylogenetic tree. All the protein kinase domains of these MAPKs were subjected to sequence

alignments through ClustalW using Molecular Evolutionary Genetic Analysis software version

6.0 (MEGA 6.0). Neighbor-joining (NJ) algorithm was used with “p-distance” as amino acid

substitution model and “pairwise deletion” as gaps/missing data treatment and 1000 bootstrap

replicates.

Gene selection pressure detection

In the adaptive evolution process of living organisms, protein-coding genes are generally

under an active natural selection pressure. Traditionally, this gene selection pressure can be

described as the ratio of Ka/Ks: Ka is the rate of non-synonymous substitution and Ks is the

rate of synonymous substitution. The Ka/Ks ratio can be adopted to assess either negative or

positive selection tendencies for genes of interest. In order to estimate the gene selection pres-

sure, all the MAPKs of 13 arthropod species were analyzed. Based on the protein and cDNA

sequence alignments, the Ka, Ks and Ka/Ks values were calculated pairwise with the Ka/

Ks_Calculator 2.0 (https://sourceforge.net/projects/kakscalculator2/) using the MYN algo-

rithm. Ka/Ks values < 1, = 1,> 1 indicate genes involved in purifying selection, neutral evolu-

tion, and positive selection, respectively.

qPCR analysis

The detailed procedure used for real-time quantitative PCR (qPCR) analysis to detect gene

expression has been described elsewhere [66]. Gene-specific primers of MAPK cascade genes

were selected in this study (S3 Table), while qPCR primers of Bt resistance-related genes were

obtained from our previous studies [30–33]. The qPCR reactions were performed with

2.5 × SYBR Green MasterMix Kit (TIANGEN) following the manufacturer’s instructions in

the QuantStudio 3 Real-Time PCR System (Applied Biosystems). Four technical repeats and

three biological replicates were conducted for each treatment. Relative expression levels of tar-

get genes were calculated using the 2-ΔΔCt method and normalized to the ribosomal protein

L32 (RPL32) gene (GenBank accession no. AB180441).
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Western blot

Midgut tissues were dissected from fourth-instar P. xylostella larvae of different strains. Midgut

tissues were lysed and homogenized in CelLytic M Cell Lysis Reagent (Sigma Aldrich) supple-

mented with the EDTA-Free Complete Protease Inhibitor Cocktail (Roche) and the Phos-

STOP Phosphatase Inhibitor Cocktail (Roche) according to the manufacturer’s instruction,

and the supernatant containing dissolved midgut proteins was collected by centrifugation.

After protein quantification by using the Bradford assay (Biomed), the obtained midgut pro-

teins were separated in 10% SDS-PAGE (CWBIO) with the PageRuler Prestained Protein Lad-

der (Thermo Fisher Scientific) and electrotransferred to PVDF membranes (Merk Millipore).

Membranes were then blocked with Bløk-PO buffer (Merk Millipore) and incubated at 4˚C

overnight with specific primary antibodies for the different proteins (S4 Table). HRP-conju-

gated goat anti-rabbit IgG were diluted 1:5000 and incubated 1 h at 25˚C. Membranes were

washed with TBST buffer 4 times for 10 min each time after incubated with antibodies. Blots

were revealed by SuperSignal West Pico Chemiluminescent reagent (Thermo Fisher Scientific)

and caught by the Tanon-5200 Chemiluminescent Imaging System (Tanon). The images were

analyzed using the ImageJ 1.51 software (https://imagej.nih.gov/ij/).

RNA interference

The dsRNA synthesis and gene silencing were performed as previously described [30,71].

Briefly, gene-specific dsRNA primers harboring a T7 promoter on the 50 end were used to tar-

get different MAPK genes or EGFP gene (GenBank accession no. KC896843) were designed

using the Primer Premier 5.0 software (Premier Biosoft) (S3 Table). The primer sets used to

generate dsRNA of each targetMAPK gene were designed accordingly to the gene-specific

region and not in the conserved kinase domain in order to avoid potential off-target effects,

and no specific hits to any other gene were found. The specificity of the selected dsRNA frag-

ments was analyzed by BlastN search on the GenBank and P. xylostella genome databases. The

obtained PCR products using these gene-specific primers were used as DNA templates for in
vitro dsRNA synthesis using the T7 RiboMAX Express RNAi System (Promega) following the

manufacturer’s protocol. The generated dsRNA samples were dissolved in injection buffer [10

mM Tris–HCl (pH 7.0); 1 mM EDTA] and mixed with Metafectene PRO transfection reagent

(Biontex) before microinjection into the hemocoels of third-instar NIL-R larvae. A total of 70

nanoliters of buffer, containing dsEGFP (300 ng) or dsRNA (300 ng) were microinjected using

a Nanoliter 2000 microinjection system (World Precision Instruments) under an SZX10

microscope (Olympus) with <10% larval mortality 5 days post-injection. More than fifty lar-

vae were microinjected for each treatment and three independent experiments were con-

ducted. The optimal detection time of silencing effect and the quantities of dsRNA injected

were optimized in preliminary experiments. Combinatorial RNAi assays involving simulta-

neous silencing of several MAPK genes were conducted in parallel with single gene RNAi

assays. The RNAi effectiveness was validated by qPCR at 48 h post-injection. In addition, to

determine the regulation of MAP4K4, MAP3Ks and MAP2Ks on p38, JNK and ERK, both the

protein and phosphorylation levels were detected by western blot assays. To access the role of

MAPK signaling cascade in regulation of Bt Cry1Ac resistance-related genes in P. xylostella,

the relative expression level of ALP, APNs and ABC transporters genes were tested by qPCR at

48 h. Leaf-dip bioassays using Cry1Ac protoxin (1,000 mg/L) were performed for 72 h using

larvae at 48 h post-injection. Each bioassay replicated three times, larval mortality in control

treatments was below 5% and bioassay data processing was as mentioned above.
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MAPK inhibitor assay

To analyze the role of p38, JNK and ERK in regulating Cry1Ac resistance related genes, NIL-R

strain larvae were treated with the specific commercial inhibitors of p38, JNK and ERK

MAPK. The optimal concentrations and detection time of these specific inhibitors were opti-

mized in preliminary experiments (S8 Fig). After optimization, 30 μM concentration of each

SB203580 (specific inhibitor of p38, Merk Millipore), SP600125 (specific inhibitor of JNK,

Merk Millipore), and PD0325901 (specific inhibitor of MEK1/2, TargetMol) was selected to

conduct these experiments. We used a leaf-dip method similar to the toxicity bioassay. The

detailed experimental procedures were as follows. The MAPK inhibitors were first dissolved in

DMSO (Sigma Aldrich), then, 0.05% (v/v) Triton X-100 solution was added to the dissolved

inhibitors with the final concentration of DMSO as 0.1%. Afterward, the leaf discs (10 cm in

diameter) were dipped into inhibitor solutions or DMSO solution alone (control), the leaf

discs were air-dried and placed in glass dishes containing wet filter paper. Fifty third-instar

NIL-R larvae were tested on the leaf discs. After testing for 6 h, some larvae were used for mid-

gut dissection to obtain RNA and protein samples for qPCR and western blot analysis, respec-

tively. The remaining larvae were used for leaf-dip bioassays as described above.

Statistical analyses and data visualization

The gene cluster analyses were performed with Cluster 3.0 software (https://www.geo.vu.nl/~

huik/cluster.htm) and heat maps were visualized by the TreeView software (https://treeview.

co.uk/). For qPCR, western blot and bioassay data, one way ANOVA with Duncan’s test were

used for analyses of statistical significance (P < 0.05) using IBM SPSS Statistics 23.0 (https://

www-01.ibm.com/support/docview.wss?uid=swg24038592). Graphs were generated by Sigma-

Plot 12.5 (https://systatsoftware.com/products/sigmaplot/), GraphPad Prism 7.0 (https://www.

graphpad.com/scientific-software/prism/) or R version 3.4.3 (https://www.r-project.org/), and

optimized in Adobe Illustrator CC 2015 (www.adobe.com/Illustrator). The raw data of the fig-

ures and statistical analyses in this study are provided in S1 Data.

Supporting information

S1 Fig. Cloning and Characterization of all identified MAPK cascade genes in P. xylostella.

(A) Amplification of full-length cDNA of all identified MAPK cascade genes in P. xylostella.

M1 and M2 represent two molecular size markers. Lanes 1 to 13 are PxMAP4K3, PxMAP3K4,

PxMAP3K7, PxMAP3K10, PxMAP3K12, PxMAP3K15, PxRaf, PxTAO, PxMAP2K1,

PxMAP2K4, PxMAP2K6, PxMAP2K7 and PxMAPK15 respectively. Lanes 14 to 16 are Pxp38,

PxERK and PxJNK. All the PCR products were resolved by 1.5% agarose gel electrophoresis.

(B) Gene structure of all identified MAPK cascade genes. The boxes represent exons and are

drawn to scale. The numbers in boxes indicate the length of exons and the numbers above

boxes indicate the exons order.

(PDF)

S2 Fig. Scaffold location of all identified MAPK cascade genes in the P. xylostella genome.

The length of scaffolds and the location of MAPK genes are drawn to scale. The sequences on

the same scaffold can be assembled to the same gene. For example, Px016598, Px016599 and

Px016600 can be assembled to PxMAP3K12. The gene sequence of PxMAP2K1 can be found

in the P. xylostella genome, but its scaffold location information is absent.

(PDF)

S3 Fig. Pairwise comparisons of primary sequence identities among MAPK cascade kinases

of P. xylostella. Values in each rectangle represent the percent identity of pairs of MAPK
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cascade kinases. Gene names are at the left and across the top. Percentage identity for each

comparison is color-coded according to the gradient value at the bottom.

(PDF)

S4 Fig. Distribution of MAPK cascade genes among 15 lepidopteran insects. The presence

or absence of the MAPKs has been assessed in the genome of 15 lepidopteran insects. The

gene categories based on the classification of kinase domains are at the top.

(PDF)

S5 Fig. RNA-seq analysis of MAPK cascade genes in P. xylostella. The RNA-seq data used

here were downloaded from the Sequence Read Archive (SRA). (A)–(C) The log2 TPM values

of genes were used to create the heatmap by Cluster 3.0. with correlation (uncentered) distance

and complete linkage. Heatmaps were visualized by TreeView. (A) Expression patterns (log2

TPM values) of MAPK cascade genes in four developmental stages. E, egg (SRX056231); L,

larva (SRX056232); P, pupa (SRX056233); A, adult (SRX056234). (B) Expression patterns (log2

TPM values) of MAPK cascade genes in six adult tissues. AH, adult head (SRX1984133); AA,

adult abdomen (SRX1977074); APG, adult pheromone gland (SRX1984138); AL, adult leg

(SRX1984145); MA, male antennae (SRX1984140); FA, female antennae (SRX1984104). (C)

Expression patterns (log2 TPM values) of MAPK cascade genes in a study of fungal pathogen

infection. 24c, 24 h control (SRX1165822); 24t, 24 h infection (SRX1165825); 36c, 36 h control

(SRX1165823); 36t, 36 h infection (SRX1165826); 48c, 48 h control (SRX1165824); 48t, 48 h

infection (SRX1165827). (D) The absolute expression levels of MAPK cascade genes in midgut

tissues of third-instar DBM1Ac-S larvae as determined by the RPKM values of our previous

transcriptome and RNA-seq data. The unigenes of MAPK cascade genes were identified by

searching against the midgut transcriptome with the full-length cDNA sequence as queries.

The RPKM values of these unigenes derived from the RNA-seq libraries were for gene expres-

sion analysis.

(PDF)

S6 Fig. The spatial-temporal expression pattern of Pxp38, PxJNK and PxERK genes in the

susceptible DBM1Ac-S P. xylostella as determined by qPCR analysis. Data in the figures are

means and stand errors from three biological replicates. Different letters indicate significant

differences between different treatments (P< 0.05; Duncan’s test; n = 3). Developmental

stages: EG, egg; L1, first-instar larvae; L2, second-instar larvae; L3, third-instar larvae; L4,

fourth-instar larvae; PP, pre-pupae; P, pupae; MA, male adults; FA, female adults. Tissues: HD,

head; IN, integument; MG, midgut; TS, testis; MT, Malpighian tubules.

(PDF)

S7 Fig. Quantification of the relative expression of p38, JNK and ERK MAPK in western

blots (Fig 3B) after RNAi of the different MAPK proteins. Western blot assays were ana-

lyzed with ImageJ 1.51. Data in figures show means and standard errors from three biological

replicates. Different letters indicate significant differences between different treatments

(P< 0.05; Duncan’s test; n = 3).

(PDF)

S8 Fig. Optimization of MAPK inhibitors concentration and detection time. The

SB203580, SP600125 and PD0325901 are the specific inhibitors of p38, JNK and ERK, respec-

tively. To determine the appropriate concentrations of each inhibitor, the third-instar NIL-R

larvae were treated with different concentrations as follows: 0, 4, 10, 30 μM for 6 h. Based on

these results, the proper concentrations of inhibitors selected to be used in the subsequent

assays was 30 μM for the three SB203580, SP600125 and PD0325901 inhibitors. To determine
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the appropriate detection time, the third-instar larvae were treated with 30 μM of each inhibi-

tor for 0, 3, 6, 12, 24 h. All inhibitors can significantly reduce the phosphorylation level of

these kinases after 6 h of treatment, which was selected as the appropriate detection time.

(PDF)

S9 Fig. Quantification of the relative abundance of p38, JNK and ERK MAPK in western

blots (Fig 4A) after inhibition of the different key MAPK proteins. Western blot assays

were analyzed with ImageJ 1.51. Data in figures show means and standard errors from three

biological replicates. Different letters indicate significant differences between different treat-

ments (P< 0.05; Duncan’s test; n = 3).

(PDF)

S1 Table. Genome-wide characterization of the MAPK cascade genes in P. xylostella.

(DOCX)

S2 Table. List of the current available MAPK cascade genes in different species.

(DOCX)

S3 Table. Primers used in this study.

(DOCX)

S4 Table. Primary antibodies used in this study.

(DOCX)

S5 Table. The final identified phosphorylated polypeptide sequences in the quantitative

phosphoproteomic analysis. The polypeptides of MAPK proteins have been marked out in

the right side of the table.

(XLSX)

S1 Data. Raw data used in the figures and statistical analyses.

(XLSX)
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