258 research outputs found

    Investigation of fluids flow behavior in nano-scale channels by using optic imaging system

    Get PDF
    Tight gas and shale gas reservoirs are characterized to have small pores with diameters in nanometer (nm) range. The physics of fluid flow in nanopores is poorly understood. Knowing the fluid flow behavior in the nano-range channels is of major importance for stimulation design, gas production optimization and calculations of the relative permeability of gas in tight shale gas systems. In this work, a lab-on-chip approach for direct visualization of the fluid flow behavior in nano-scale channels was developed using an advanced epi-fluorescence microscopy method combined with a nano-fluidic chip. The nanofluidic chips with different dimensions were designed and fabricated. First a concentration dependent fluorescence signal correlation was developed for the determination of single phase flow rate. Experiments of water/gas flow in nano-scale channels with 100nm depth were conducted. Meanwhile, three different flow patterns were observed from two phase flow in nano-scale channels experiments and their special features were described. The displacements of two-phase flow in 100 nm depth slit-like channels were reported in the second part of this work. Specifically, the two-phase gas slippage factor as the function of water saturation was studied. Moreover, water/gas two phase displacements were visualized in nanochanels with various depths. The displacements mechanisms for both drainage and imbibition processes were discussed and water/gas relative permeability in nano-scale channels were summarized. The residue water/gas saturations in nano-scale channels were also characterized. The results of this work are crucial for permeability measurement and understanding fluid flow behavior for unconventional shale gas systems with nanopores. --Abstract, page iv

    Causes and classification of EMD mode mixing

    Get PDF
    At present, the lack of insight into the problem of mode mixing in Empirical Mode Decomposition (EMD) hinders the development of solutions to the problem. Starting with the phenomenon that the EMD decomposition cannot be accomplished when the number of signal extrema is abnormal, the causes of mode mixing were investigated and the conclusion was reached that there are only two basic types of mode mixing. In light of this finding, the mechanisms of the three typical mode mixing solutions and their limitations were analyzed. It was found from the analysis process and results that the findings of this study regarding the causes and types of mode mixing were correct

    An Efficient Frequent Patterns Mining Algorithm based on Apriori Algorithm and the FP-tree Structure

    Get PDF
    Association rule mining is to find association relationships among large data sets. Mining frequent patterns is an important aspect in association rule mining. In this paper, an efficient algorithm named Apriori-Growth based on Apriori algorithm and the FP-tree structure is presented to mine frequent patterns. The advantage of the Apriori-Growth algorithm is that it doesn't need to generate conditional pattern bases and sub- conditional pattern tree recursively. Computational results show the Apriori-Growth algorithm performs faster than Apriori algorithm, and it is almost as fast as FP-Growth, but it needs smaller memory

    Genome-wide DNA methylation and gene expression analyses in monozygotic twins identify potential biomarkers of depression

    Get PDF
    Depression is currently the leading cause of disability around the world. We conducted an epigenome-wide association study (EWAS) in a sample of 58 depression score-discordant monozygotic twin pairs, aiming to detect specific epigenetic variants potentially related to depression and further integrate with gene expression profile data. Association between the methylation level of each CpG site and depression score was tested by applying a linear mixed effect model. Weighted gene co-expression network analysis (WGCNA) was performed for gene expression data. The association of DNA methylation levels of 66 CpG sites with depression score reached the level of P < 1 x 10(-4). These top CpG sites were located at 34 genes, especially PTPRN2, HES5, GATA2, PRDM7, and KCNIP1. Many ontology enrichments were highlighted, including Notch signaling pathway, Huntington disease, p53 pathway by glucose deprivation, hedgehog signaling pathway, DNA binding, and nucleic acid metabolic process. We detected 19 differentially methylated regions (DMRs), some of which were located at GRIK2, DGKA, and NIPA2. While integrating with gene expression data, HELZ2, PTPRN2, GATA2, and ZNF624 were differentially expressed. In WGCNA, one specific module was positively correlated with depression score (r = 0.62, P = 0.002). Some common genes (including BMP2, PRDM7, KCNIP1, and GRIK2) and enrichment terms (including complement and coagulation cascades pathway, DNA binding, neuron fate specification, glial cell differentiation, and thyroid gland development) were both identified in methylation analysis and WGCNA. Our study identifies specific epigenetic variations which are significantly involved in regions, functional genes, biological function, and pathways that mediate depression disorder.Peer reviewe

    High-Mobility and Bias-Stable Field-Effect Transistors Based on Lead-Free Formamidinium Tin Iodide Perovskites

    Get PDF
    Electronic devices based on tin halide perovskites often exhibit a poor operational stability. Here, we report an additive engineering strategy to realize high-performance and stable field-effect transistors (FETs) based on 3D formamidinium tin iodide (FASnI3) films. By comparatively studying the modification effects of two additives, i.e., phenethylammonium iodide and 4-fluorophenylethylammonium iodide via combined experimental and theoretical investigations, we unambiguously point out the general effects of phenethylammonium (PEA) and its fluorinated derivative (FPEA) in enhancing crystallization of FASnI3 films and the unique role of fluorination in reducing structural defects, suppressing oxidation of Sn2+ and blocking oxygen and water involved defect reactions. The optimized FPEA-modified FASnI3 FETs reach a record high field-effect mobility of 15.1 cm2/(V·s) while showing negligible hysteresis. The devices exhibit less than 10% and 3% current variation during over 2 h continuous bias stressing and 4200-cycle switching test, respectively, representing the best stability achieved so far for all Sn-based FETs.</p

    High-Mobility and Bias-Stable Field-Effect Transistors Based on Lead-Free Formamidinium Tin Iodide Perovskites

    Get PDF
    Electronic devices based on tin halide perovskites often exhibit a poor operational stability. Here, we report an additive engineering strategy to realize high-performance and stable field-effect transistors (FETs) based on 3D formamidinium tin iodide (FASnI3) films. By comparatively studying the modification effects of two additives, i.e., phenethylammonium iodide and 4-fluorophenylethylammonium iodide via combined experimental and theoretical investigations, we unambiguously point out the general effects of phenethylammonium (PEA) and its fluorinated derivative (FPEA) in enhancing crystallization of FASnI3 films and the unique role of fluorination in reducing structural defects, suppressing oxidation of Sn2+ and blocking oxygen and water involved defect reactions. The optimized FPEA-modified FASnI3 FETs reach a record high field-effect mobility of 15.1 cm2/(V·s) while showing negligible hysteresis. The devices exhibit less than 10% and 3% current variation during over 2 h continuous bias stressing and 4200-cycle switching test, respectively, representing the best stability achieved so far for all Sn-based FETs.</p
    • …
    corecore