
An Efficient Frequent Patterns Mining Algorithm based on Apriori
Algorithm and the FP-tree Structure

Bo Wu, Defu Zhang, Qihua Lan, Jiemin Zheng
Department of Computer Science, Xiamen University, Xiamen 361005, China

Longtop Group Post-doctoral Research Center, Xiamen, 361005, China
dfzhang@xmu.edu.cn

Abstract

Association rule mining is to find association
relationships among large data sets. Mining frequent
patterns is an important aspect in association rule
mining. In this paper, an efficient algorithm named
Apriori-Growth based on Apriori algorithm and the
FP-tree structure is presented to mine frequent
patterns. The advantage of the Apriori-Growth
algorithm is that it doesn’t need to generate
conditional pattern bases and sub- conditional pattern
tree recursively. Computational results show the
Apriori-Growth algorithm performs faster than Apriori
algorithm, and it is almost as fast as FP-Growth, but it
needs smaller memory.

1. Introduction

Data mining has recently attracted considerable

attention from database practitioners and researchers
because it has been applied to many fields such as
market strategy, financial forecasts and decision
support [1]. Many algorithms have been proposed to
obtain useful and invaluable information from huge
databases [2]. One of the most important algorithms is
mining association rules, which was first introduced in
[3, 4].

Association rule mining has many important
applications in our life. An association rule is of the
form X => Y. And each rule has two measurements:
support and confidence. The association rule mining
problem is to find rules that satisfy user-specified
minimum support and minimum confidence. It mainly
includes two steps: first, find all frequent patterns;
second, generate association rules through frequent
patterns.

 Many algorithms for mining association rules from
transactions database have been proposed [5, 6, 7]
since Apriori algorithm was first presented. However,
most algorithms were based on Apriori algorithm

which generated and tested candidate itemsets
iteratively. This may scan database many times, so the
computational cost is high.

 In order to overcome the disadvantages of Apriori
algorithm and efficiently mine association rules
without generating candidate itemsets, a frequent-
pattern-tree (FP-Growth) structure is proposed in [9].
The FP-Growth was used to compress a database into a
tree structure which shows a better performance than
Apriori. However, FP-Growth consumes more memory
and performs badly with long pattern data sets. In order
to further improve FP-Growth algorithm, many authors
developed some improved algorithms and obtained
some promising results [10, 11, 12, 13].
 Due to Apriori algorithm and FP-Growth algorithm
belong to batch mining. What is more, their minimum
support is often predefined, it is very difficult to meet
the applications of the real-world. Recently, there are
some growing interests in developing techniques for
mining association patterns without a support
constraint or with variable supports [14, 15, 16].
Association rule mining among rare items is also
discussed in [17,18]. So far, there are very few papers
that discuss how to combine Apriori algorithm and FP-
Growth to mine association rules. In this paper, an
efficient algorithm named Apriori-Growth based on
Apriori algorithm and FP-Growth algorithm is
proposed, this algorithm can efficiently combine the
advantages of Apriori algorithm and FP-Growth
algorithm. Computational results verify the good
performance of the Apriori-Growth algorithm.

The organization of this paper is as follows. In
Section 2, we will briefly review the Apriori method
and FP-Growth method. Section 3 proposes an
efficient Apriori-Growth algorithm that based on
Apriori and the FP-tree structure. Experimental results
will be presented in Section 4. Section 5 gives out the
conclusions.

Third 2008 International Conference on Convergence and Hybrid Information Technology

978-0-7695-3407-7/08 $25.00 © 2008 IEEE

DOI 10.1109/ICCIT.2008.109

1091

Third 2008 International Conference on Convergence and Hybrid Information Technology

978-0-7695-3407-7/08 $25.00 © 2008 IEEE

DOI 10.1109/ICCIT.2008.109

1099

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Xiamen University Institutional Repository

https://core.ac.uk/display/41373887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Two Classcical Mining Algorithms

2.1 Apriori Algorithm

In [4], Agrawal proposed an algorithm called

Apriori to the problem of mining association rules first.
Apriori algorithm is a bottm-up, breadth-first approach.
The frequent itemsets are extended one item at a time.
Its main idea is to generate k-th candidate itemsets
from the (k-1)-th frequent itemsets and to find the k-th
frequent itemsets from the k-th candidate itemsets.
The algorithm terminates when frequent itemsets can
not be extended any more. But it has to generate a
large amount of candidate itemsets and scans the data
set as many times as the length of the longest frequent
itemsets. Apriori algorithm can be written by
pseudocode as follows.
Procedure Apriori
Input: data set D, minimum support minsup

Output: frequent itemsets L

(1) 1L = find_frequent_1_itemsets(D);

(2) for (k = 2; 1kL − ≠ ф; k++)

(3) {

(4) kC = Apriori_gen(1kL − , minsup);

(5) for each transactions t � D

(6) {

(7) tC = subset(kC , t);

(8) for each candidate c � tC

(9) c.count++;

(10) }

(11) kL = {c � kC | c.count > minsup};

(12) }

(13) return L = { 1L � 2L � ... � nL };

 In the above pseudocode, kC means k-th candidate

itemsets and kL means k-th frequent itemsets.

2.2 FP-Growth Algorithm

In [9], Han, Pei et al. proprosed a data structure
called FP-tree (frequent pattern tree). FP-tree is a
highly compact representation of all relevant frequency

information in the data set. Every path of FP-tree
represents a frequent itemset and the nodes in the path
are stored in decreasing order of the frequency of the
corresponding items. A great advantage of FP-tree is
that overlapping itemsets share the same prefix path.
So the information of the data set is greatly
compressed. It only needs to scan the data set twice
and no candidate itemsets are required.

An FP-tree has a header table. The nodes in the
header table link to the same nodes in its FP-tree.
Single items and their counts are stored in the header
table by decreasing order of their counts. Fig.1a shows
an example of a data set while Fig.1b shows the FP-
tree constructed by that data set with minsup = 30%.

Fig.1a. A data set

Fig.1b. FP-tree Constructed by the above data set
The disadvantage of FP-Growth is that it needs to

work out conditional pattern bases and build
conditional FP-tree recursively. It performs badly in
data sets of long patterns.

3. Apriori-Growth Algorithm

 In this Section, a new algorithm based on Apriori
and the FP-tree structure is presented, which is called
Apriori-Growth.

10921100

Fig.2a shows the data structure of the node of
header table. Its tablelink points to the first node in FP-
tree which has the same name with it. And Fig.2b
shows the data structure of the node of FP-tree. Its
tablelink points to the next node in FP-tree which has
the same name with it.

Name
*tablelink
Count

Fig.2a the data structure of the node of header table

Name
*tablelink
*parent
*child
Count

Fig.2b the data structure of the node of FP-tree

The Apriori-Growth mainly includes two steps.
First, the data set is scanned one time to find out

the frequent 1 itemsets, and then the data set is scanned
again to build an FP-tree as [9] do.

At last, the built FP-tree is mined by Apriori-
Growth instead of FP-Growth. The detailed Apriori-
Growth algorithm is as follows.
Procedure Apriori-Growth
Input: data set D, minimum support minsup
Output: frequent itemsets L
(1) 1L = frequent 1 itemsets;

(2) for(k = 2; 1kL − ≠ф; k++)
(3) {
(4) kC = Apriori_gen(1kL − , minsup);

(5) for each candidate c ∈ tC
(6) {
(7) sup = FP-treeCalculate(c);
(8) if (sup > minsup)
(9) kL = kL ∪ c;
(10) }
(11) }
(12) return L = { 1L � 2L � ... � nL };

Procedure FP-treeCalculate
Input: candidate itemset c
Output: the support of candidate itemset c
(1) sort the items of c by the decreasing order of

header table;
(2) find the node p in the header table which has the

same name with the first item of c;
(3) q = p.tablelink;

(4) count = 0;
(5) while q is not null
(6) {
(7) if the items of the itemset c except first item

all appear in the prefix path of q
(8) count += q.count;
(9) q = q.tablelink;
(10) }
(11) return count / totalrecord;

As we know, the item of bigger count must be the
ancestor of the smaller one if several items appear
together in a path. So the count of the path is equal to
the count of the node which is closest to leaf. So to
find the count of candidate itemsets is to find the sum
of those nodes.

In this case, we can work out the support of
candidate itemsets by traversing related nodes in FP-
tree and their prefix paths.

4. Experimental Results

The content of our test data set are bank card

transactions seized from bank of China. There are 27
different items and 50905 records in that data set.

In order to verify the performance of the Apriori-
Growth algorithm, we compare Apriori-Growth with
Apriori and FP-Growth. Three algorithms are
performed on a computer with a 1.41GHz processor
and 512MB memory. The program is developed by
Visual C++ 6.0. The computational results of three
algorithms are reported in Table 1.

The clearer comparison of three algorithms is given
in Fig.3.

Table 1. The running time of three algorithms

Min_sup

Apriori Apriori-
Growth

FP-Growth

10% 766ms 391ms 407ms

5% 1515ms 406ms 437ms

1% 6953ms 438ms 561ms

0.5% 13125ms 484ms 688ms

0.2% 31672ms 687ms 874ms

0.1% 60547ms 1093ms 1078ms

From Fig.3, we can make the following two

statements. First, Apriori-Growth works much faster
than Apriori. It uses a different method FP-
treeCalcualte to calculate the support of candidate
itemsets. Second, Apriori-Growth works almost as fast

10931101

as FP-Growth. But it consumes less memory than FP-
Growth because it doesn’t need to generate conditional
pattern bases and build sub-conditional pattern tree
recursively.

Fig.3

5. Conclusions and future work

In this paper, we have proposed the Apriori-
Growth algorithm. This method only scans the data set
twice and builds FP-tree once while it still needs to
generate candidate itemsets.

The future work is to further improve the Apriori-
Growth and test more and larger datasets.

Acknowledgments

 This work was supported by the National Nature
Science Foundation of China (Grant no. 60773126)
and the Province Nature Science Foundation of Fujian
(Grant no. A0710023) and academician start-up fund
(Grant No. X01109) and 985 information technology
fund (Grant No. 0000-X07204) in Xiamen University.

Reference

[1] M.S. Chen, J. Han, P.S. Yu, “Data mining: an overview
from a database perspective”, IEEE Transactions on
Knowledge and Data Engineering, 1996, 8, pp. 866-883.
[2] J. Han, M. Kamber, Data Mining: Concepts and
Techniques, Morgan Kaufmann Publisher, San Francisco,
CA, USA, 2001.
[3]R.Agrawal, T.Imielinski and A.Swami, “Mining
association rules between sets of items in large databases,”
in: Proceedings of the Association for Computing
Machinery, ACM-SIGMOD, 1993, 5, pp.207-216.

[4] R. Agrawal, R. Srikant, “Fast algorithms for mining
association rules”, Proceedings of the 20th Very Large
DataBases Conference (VLDB’94), Santiago de Chile, Chile,
1994, pp. 487-499.
[5]Agrawal, R., Srikant, R., & Vu, Q, “Mining association
rules with item constraints”, In The third international
conference on knowledge discovery in databases and data
mining, Newport Beach, California, 1997, pp. 67-73.
[6]J.Han, Y. Fu, “Discovery of multiple-level association
rules from large database”, In The twenty-first international
conference on very large data bases, Zurich, Switzerland,
1995, pp. 420-431.
[7]Fukuda, T., Morimoto, Y., Morishita, S., & Tokuyama, T.,
“Mining optimized association rules for numeric attributes”,
In The ACM SIGACT-SIGMOD-SIGART symposium on
principles of database systems, 1996, pp. 182-191.
[8]Park, J. S., Chen, M. S., & Yu, P. S., “Using a hash-based
method with transaction trimming for mining association
rules”, IEEE Transactions on Knowledge and Data
Engineering, 1997, 9(5), pp. 812-825.
[9]J.Han, J.Pei and Y.Yin., “Mining frequent patterns
without candidate Generation”, in: Proceeding of ACM
SIGMOD International Conference Management of Data,
2000, pp. 1-12.
[10] J.Han, J.Wang, Y.Lu and P.Tzvetkov, “Mining top-k
frequent closed patterns without minimum support”, in:
Preceeding of International Conference Data Mining,
2002,12, pp. 211-218.
[11]G.Liu, H.Lu, J.X.Yu, W.Wei and X.Xiao, “AFOPT: An
efficient implementation of pattern growth approach”, in:
IEEE ICDM Workshop Frequent Itemset Mining
Implementations, CEUR Workshop Proc., 2003, 80.
[12] J.Wang, J.Han, and J.Pei, “CLOSET+: searching for the
best strategies for mining frequent closed Itemsets”, in:
Preceeding of International Conference, Knowledge
Discovery and Data Mining, 2003, 8, pp. 236-245.
[13]Tzung-Pei Hong, Chun-Wei Lin, Yu-Lung Wu,
“Incrementally fast updated frequent pattern trees”, Expert
Systems with Applications, 2008, 34, pp. 2424-2435.
[14] K. Wang, Y. He, D. Cheung, Y. Chin, “Mining
confident rules without support requirement”, in:
Proceedings of ACM International Conference on
Information and Knowledge Management, CIKM, 2001, pp.
89-96.
[15] H. Xiong, P. Tan, V. Kumar, “Mining strong affinity
association patterns in data sets with skewed support
distribution”, in: Proceedings of the Third IEEE
International Conference on Data Mining, ICDM, 2003, pp.
387-394.
[16]Ya-Han Hu, Yen-Liang Chen, “Mining association rules
with multiple minimum supports: a new mining algorithm
and a support tuning mechanism”, Decision Support Systems,
2006, 42, pp. 1-24.
[17] J. Ding, “Efficient association rule mining among
infrequent items”, Ph.D. Thesis, University of Illinois at
Chicago, 2005.
[18] Ling Zhou, Stephen Yau, “Efficient association rule
mining among both frequent and infrequent items”,
Computers and Mathematics with Applications, 2007, 54, pp.
737-749.

10941102

