879 research outputs found

    University of Akron Student Journal Reading Patterns

    Get PDF
    This report is a factual analysis of the results of the University of Akron survey of students, conducted in October and November 2005 (see Appendix for the Questionnaire.) A comparison of this report with Tenopir & King survey data of other U.S. universities is not yet included, but further comparisons, both with the other Ohio universities, universities in Australia, and the University of Tennessee, will be included in subsequent articles for publication. This report is for the internal use of Akron library personnel, as well as for the preparation of presentations and journal articles

    University of Akron Faculty Journal Reading Patterns

    Get PDF
    This is a question-by-question analysis of the results of the University of Akron survey of faculty, conducted fall 2005 as part of a grant funded by IMLS (see Appendix for the Questionnaire.) Final results may require further analysis or information about the library context for complete analysis. At the same time as this survey, a survey of reading patterns of Akron’s students was conducted, with results presented in a separate report. Also at the same time, surveys of faculty and students at three other Ohio universities and the University of Tennessee were conducted. Comparisons among these will be included in subsequent articles for publication. This report is for internal use at Akron or may be used to prepare presentations and journal articles

    Using collision cones to assess biological deconfliction methods

    Get PDF
    Biological systems consistently outperform autonomous systems governed by engineered algorithms in their ability to reactively avoid collisions. To better understand this discrepancy, a collision avoidance algorithm was applied to frames of digitized video trajectory data from bats, swallows and fish (Myotis velifer, Petrochelidon pyrrhonota and Danio aequipinnatus). Information available from visual cues, specifically relative position and velocity, was provided to the algorithm which used this information to define collision cones that allowed the algorithm to find a safe velocity requiring minimal deviation from the original velocity. The subset of obstacles provided to the algorithm was determined by the animal's sensing range in terms of metric and topological distance. The algorithmic calculated velocities showed good agreement with observed biological velocities, indicating that the algorithm was an informative basis for comparison with the three species and could potentially be improved for engineered applications with further study

    Robust Machine Learning Applied to Astronomical Datasets III: Probabilistic Photometric Redshifts for Galaxies and Quasars in the SDSS and GALEX

    Full text link
    We apply machine learning in the form of a nearest neighbor instance-based algorithm (NN) to generate full photometric redshift probability density functions (PDFs) for objects in the Fifth Data Release of the Sloan Digital Sky Survey (SDSS DR5). We use a conceptually simple but novel application of NN to generate the PDFs - perturbing the object colors by their measurement error - and using the resulting instances of nearest neighbor distributions to generate numerous individual redshifts. When the redshifts are compared to existing SDSS spectroscopic data, we find that the mean value of each PDF has a dispersion between the photometric and spectroscopic redshift consistent with other machine learning techniques, being sigma = 0.0207 +/- 0.0001 for main sample galaxies to r < 17.77 mag, sigma = 0.0243 +/- 0.0002 for luminous red galaxies to r < ~19.2 mag, and sigma = 0.343 +/- 0.005 for quasars to i < 20.3 mag. The PDFs allow the selection of subsets with improved statistics. For quasars, the improvement is dramatic: for those with a single peak in their probability distribution, the dispersion is reduced from 0.343 to sigma = 0.117 +/- 0.010, and the photometric redshift is within 0.3 of the spectroscopic redshift for 99.3 +/- 0.1% of the objects. Thus, for this optical quasar sample, we can virtually eliminate 'catastrophic' photometric redshift estimates. In addition to the SDSS sample, we incorporate ultraviolet photometry from the Third Data Release of the Galaxy Evolution Explorer All-Sky Imaging Survey (GALEX AIS GR3) to create PDFs for objects seen in both surveys. For quasars, the increased coverage of the observed frame UV of the SED results in significant improvement over the full SDSS sample, with sigma = 0.234 +/- 0.010. We demonstrate that this improvement is genuine. [Abridged]Comment: Accepted to ApJ, 10 pages, 12 figures, uses emulateapj.cl

    Historical Pathways for Opioid Addiction, Withdrawal with Traditional and Alternative Treatment Options with Ketamine, Cannabinoids, and Noribogaine: A Narrative Review

    Get PDF
    Even as prescription opioid dispensing rates have begun to decrease, the use of illicit opioids such as heroin and fentanyl has increased. Thus, the end of the opioid epidemic is not in sight, and treating patients that are addicted to opioids remains of utmost importance. Currently, the primary pharmacotherapies used to treat opioid addiction over the long term are the opioid antagonist naltrexone, the partial-agonist buprenorphine, and the full agonist methadone. Naloxone is an antagonist used to rapidly reverse opioid overdose. While these treatments are well-established and used regularly, the gravity of the opioid epidemic necessitates that all possible avenues of treatment be explored. Therefore, in this narrative review, we analyze current literature regarding use of the alternative medications ketamine, noribogaine, and cannabinoids in treating patients suffering from opioid use disorder. Beyond its use as an anesthetic, ketamine has been shown to have many applications in several medical specialties. Of particular interest to the subject at hand, ketamine is promising in treating individuals addicted to opioids, alcohol, and cocaine. Therapeutically administered cannabinoids have been proposed for the treatment of multiple illnesses. These include, but are not limited to epilepsy, Parkinson\u27s disease, multiple sclerosis, chronic pain conditions, anxiety disorders, and addiction. The cannabinoid dronabinol has been seen to have varying effects. High doses appear to reduce withdrawal symptoms but this comes at the expense of increased adverse side effects such as sedation and tachycardia. Noribogaine is a weak MOR antagonist and relatively potent KOR agonist, which may explain the clinical anti-addictive effects. More research should be done to assess the viability of these medications for the treatment of OUD and withdrawal

    Discovery and Rossiter-McLaughlin Effect of Exoplanet Kepler-8b

    Get PDF
    We report the discovery and the Rossiter-McLaughlin effect of Kepler-8b, a transiting planet identified by the NASA Kepler Mission. Kepler photometry and Keck-HIRES radial velocities yield the radius and mass of the planet around this F8IV subgiant host star. The planet has a radius RP = 1.419 RJ and a mass, MP = 0.60 MJ, yielding a density of 0.26 g cm^-3, among the lowest density planets known. The orbital period is P = 3.523 days and orbital semima jor axis is 0.0483+0.0006/-0.0012 AU. The star has a large rotational v sin i of 10.5 +/- 0.7 km s^-1 and is relatively faint (V = 13.89 mag), both properties deleterious to precise Doppler measurements. The velocities are indeed noisy, with scatter of 30 m s^-1, but exhibit a period and phase consistent with the planet implied by the photometry. We securely detect the Rossiter-McLaughlin effect, confirming the planet's existence and establishing its orbit as prograde. We measure an inclination between the projected planetary orbital axis and the projected stellar rotation axis of lambda = -26.9 +/- 4.6 deg, indicating a moderate inclination of the planetary orbit. Rossiter-McLaughlin measurements of a large sample of transiting planets from Kepler will provide a statistically robust measure of the true distribution of spin-orbit orientations for hot jupiters in general.Comment: 26 pages, 8 figures, 2 tables; In preparation for submission to the Astrophysical Journa

    Five Kepler target stars that show multiple transiting exoplanet candidates

    Get PDF
    We present and discuss five candidate exoplanetary systems identified with the Kepler spacecraft. These five systems show transits from multiple exoplanet candidates. Should these objects prove to be planetary in nature, then these five systems open new opportunities for the field of exoplanets and provide new insights into the formation and dynamical evolution of planetary systems. We discuss the methods used to identify multiple transiting objects from the Kepler photometry as well as the false-positive rejection methods that have been applied to these data. One system shows transits from three distinct objects while the remaining four systems show transits from two objects. Three systems have planet candidates that are near mean motion commensurabilities---two near 2:1 and one just outside 5:2. We discuss the implications that multitransiting systems have on the distribution of orbital inclinations in planetary systems, and hence their dynamical histories; as well as their likely masses and chemical compositions. A Monte Carlo study indicates that, with additional data, most of these systems should exhibit detectable transit timing variations (TTV) due to gravitational interactions---though none are apparent in these data. We also discuss new challenges that arise in TTV analyses due to the presence of more than two planets in a system.Comment: Accepted to Ap

    A power-measurement methodology for large-scale, high-performance computing

    Full text link
    Improvement in the energy efficiency of supercomputers can be accelerated by improving the quality and comparability of efficiency measurements. The ability to generate accu-rate measurements at extreme scale are just now emerging. The realization of system-level measurement capabilities can be accelerated with a commonly adopted and high quality measurement methodology for use while running a workload, typically a benchmark. This paper describes a methodology that has been developed collaboratively through the Energy Efficient HPC Work-ing Group to support architectural analysis and compara-tive measurements for rankings, such as the Top500 and Green500. To support measurements with varying amounts of effort and equipment required we present three distinct levels of measurement, which provide increasing levels of ac-curacy. Level 1 is similar to the Green500 run rules today, a single average power measurement extrapolated from a subset of a machine. Level 2 is more comprehensive, but still widely achievable. Level 3 is the most rigorous of the three methodoloiges but is only possible at a few sites. How-ever, the Level 3 methodology generates a high quality re-sult that exposes details that the other methodologies may miss. In addition, we present case studies from the Leibniz Supercomputing Centre (LRZ), Argonne National Labora-tory (ANL) and Calcul Québec Universite ́ Laval that ex-plore the benefits and difficulties of gathering high quality, system-level measurements on large-scale machines

    Characteristics of Kepler Planetary Candidates Based on the First Data Set: The Majority are Found to be Neptune-Size and Smaller

    Full text link
    In the spring of 2009, the Kepler Mission commenced high-precision photometry on nearly 156,000 stars to determine the frequency and characteristics of small exoplanets, conduct a guest observer program, and obtain asteroseismic data on a wide variety of stars. On 15 June 2010 the Kepler Mission released data from the first quarter of observations. At the time of this publication, 706 stars from this first data set have exoplanet candidates with sizes from as small as that of the Earth to larger than that of Jupiter. Here we give the identity and characteristics of 306 released stars with planetary candidates. Data for the remaining 400 stars with planetary candidates will be released in February 2011. Over half the candidates on the released list have radii less than half that of Jupiter. The released stars include five possible multi-planet systems. One of these has two Neptune-size (2.3 and 2.5 Earth-radius) candidates with near-resonant periods.Comment: Paper to accompany Kepler's June 15, 2010 data release; submitted to Astrophysical Journal Figures 1,2,& 3 revised. Improved labeling on all figures. Slight changes to planet frequencies in result
    corecore