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Biological systems consistently outperform autonomous systems governed

by engineered algorithms in their ability to reactively avoid collisions.

To better understand this discrepancy, a collision avoidance algorithm was

applied to frames of digitized video trajectory data from bats, swallows and

fish (Myotis velifer, Petrochelidon pyrrhonota and Danio aequipinnatus). Infor-

mation available from visual cues, specifically relative position and velocity,

was provided to the algorithm which used this information to define collision

cones that allowed the algorithm to find a safe velocity requiring minimal devi-

ation from the original velocity. The subset of obstacles provided to the

algorithm was determined by the animal’s sensing range in terms of metric

and topological distance. The algorithmic calculated velocities showed good

agreement with observed biological velocities, indicating that the algorithm

was an informative basis for comparison with the three species and could

potentially be improved for engineered applications with further study.

provided by Carolina Digital R
1. Introduction
An increasingly wide array of unmanned vehicles is becoming available with a

range of form factors and ever-expanding capabilities. Fully using the enhanced

control authority and sensing that comes with these improvements in order to

effectively and safely navigate the world requires improved control algorithms

and estimation strategies capable of real-time path planning through changing

conditions and unexpected obstacles. Many biological systems display a remark-

able ability to perform such tasks during natural behaviour [1], so we look to their

example to gain insight into the principles underlying the highly effective reactive

collision avoidance abilities developed through evolution.

The study of systems theory with respect to biological behaviour, and vice

versa, has been a popular topic for many years that has resulted in a number of

advances in the understanding of biological systems and capabilities for engineered

systems. Biological models have been developed to describe the emergence of self-

organization and other collective behaviour in large groups of animals, including

schooling and shoaling fish, flocking birds, swarming insects and herding land ani-

mals [2]. A particle model was used to produce realistic flocking animations by

basing the behaviour of boids (bird-oid objects) upon the requirements of collision

avoidance, velocity matching and flock cohesion [3]. Consensus decision-making of

social groups has been studied to investigate decision-making among a group [4,5].

Not limited to studies of collective behaviour, Karaman & Frazzoli [6] developed a

theoretical framework to investigate the collision avoidance problem solved by

birds when navigating a forest at high speed and found a critical speed below

which a conflict-free path could be flown indefinitely.
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Certain models provide insight into animals’ sensing or

cognitive limitations, which clearly impact collision avoidance

capabilities. For example, animals in a large group appear to

only take into account some smaller number of nearby animals.

The membership of, and interactions within, these smaller

groups may be dependent on a metric distance, for example,

the zonal model of shoaling fish [7], or a topological distance,

as in the model of flocking starlings [8]. Models of perception

have also been developed to investigate the use of optic flow

in birds [9] and bats [10] and even visual tracking to aid col-

lision avoidance in insects [11].

Typically, these models begin with extensive observations of

the species and develop into theories that explain or reproduce

the behaviour—the study here takes the opposite approach,

by starting with an engineered algorithm and determining

how well it correlates to observed behaviour. Dynamic collision

avoidance for autonomous vehicles is challenging and is an

ongoing topic of research. Preventing vehicles from coming

too close to static objects in a cluttered environment can be

done, however, it becomes much more challenging when

dynamic obstacles are introduced since offline or global path

planning techniques can no longer be used. A wide array of

methods have been applied to the problem of conflict resolution,

i.e. the act of identifying and avoiding future collisions, with

varying degrees of centralization and safety and convergence

guarantees [12]. Centralization refers to the distribution (or

lack thereof) of information and processing; a distributed

system falls between the extremes of global and local infor-

mation and processing, with each agent processing global

information individually. Prescribed manoeuvres, e.g. always

turn left, and force field methods, in which goals and obstacles

are treated as oppositely and similarly charged particles, have

been shown to work, but can become prohibitively complex

for a large number of vehicles [13,14]. Optimization methods

seek to find the best collision-free path with respect to some

cost function. The optimal solution can be found for all coopera-

tive agents using a centralized approach [15] or for individual

agents using a decentralized [16] or distributed [17,18] approach.

Parallels in biology can be drawn to some conflict resolution

algorithms, including model predictive control, the so-called

bug-family algorithms and certain sensor-based techniques.

A model predictive control strategy plans a safe path based on

a goal for a limited time horizon, executes the first step of that

plan, collects new information, checks for differences between

planned and actual outcomes, and repeats the process [19]—

not unlike how biological species process information [20].

Bug algorithms use a strategy requiring minimal sensing infor-

mation: head towards the target until an obstacle is detected,

then follow its boundary until the path to the target is clear

again [21]. Sensor-based techniques rely on knowledge of

some region of space near the autonomous agent that can be

sensed and used for planning; velocity obstacles fall into this cat-

egory, using relative position and speed of other agents and

obstacles to discriminate safe and unsafe velocity vectors [22,23].

The Distributed Reactive Collision Avoidance (DRCA)

algorithm uses collision cones, a version of velocity obstacles,

to provide safe paths for an arbitrary number of agents [18].

The algorithm detects conflicts (future collisions) by checking

if the current velocity falls within a collision cone. If a conflict

is detected, a safe velocity nearest the original velocity is

found and implemented in a deconfliction manoeuvre. In bio-

logical terms, this implementation assumes an animal will

continue in one direction until something in its environment
forces it to change, and then it will deviate as little as possible

from its original path. The calculations are performed for each

agent individually and require only information that can be

obtained from visual cues: velocity, bearing and range of other

agents. Visual input is noted here as it is common to all species

under study; however, for the purposes of the following analysis

the relative velocity and/or position information could come

from any sensory input. The distributed nature, lack of compli-

cated cost function and limited sensing requirements of this

algorithm make it a good candidate for comparison with biologi-

cal species. Furthermore, both birds and bats are known to use

velocity cues in target tracking by applying a version of constant

bearing, decreasing range techniques [24,25].

In this work, we compare the collision avoidance trajectories

of bats (Myotis velifer), birds (Petrochelidon pyrrhonota) and fish

(Danio aequipinnatus) to those predicted by the DRCA algor-

ithm. This paper presents an extension of the original DRCA

algorithm from two to three dimensions and corrects a previous

study done by Boardman et al. [26], which performed a similar

analysis by flattening the trajectories to two dimensions and

applying the original DRCA algorithm. The three-dimensional

analysis provides the algorithm with spatial information that

corresponds more closely to the three-dimensional environ-

ments of the animals and eliminates ‘phantom conflicts’

created by two-dimensional conflict checking. We hypothesize

that all these species will approximately match the DRCA pre-

dictions due to the overlap between DRCA processing and

sensory requirements and those likely available to the animals.

We further hypothesize that the birds and bats will agree more

closely with the DRCA predictions than the fish because one of

the DRCA assumptions—the desirability of a future trajectory

close to the current trajectory—is more likely satisfied for fast

moving flying animals in a diffuse fluid than for slower animals

in a dense fluid.
2. Material and methods
2.1. Biological species
The species used for comparison in this study were chosen due to

their agile manoeuvring capabilities and social nature.

2.1.1. Emerging cave bats
Myotis velifer are bats that roost in colonies found in caves and

tunnels. Each night they emerge in small groups after sunset

[27]. They are insectivores and use echolocation as their primary

means of sensing, although vision may also play a role in naviga-

tion [10]. An average bat in this species is 0.1 m long with a

wingspan of 0.3 m, weighs 12 g, and has a cruising speed of

5.5–6.6 m s21 [27,28].

Trajectory data were collected for 9 s and 79 s at 131.5 frames

per second as groups of 20 and 86 bats, respectively, emerged

from their cave on the Bamberger Ranch in Texas. Each bat was

in view for approximately 1.7 s with a maximum of 10 bats in

view at any one time. In addition to other animals, there were

also two static objects in their flight path: a pole 1.6 m tall and a

vine 0.2 m wide extending from the ground to the forest canopy.

The bats’ trajectories and the static objects are depicted in figure 1.

The cave bats were filmed in low light using three mid-infrared

FLIR SC8000 cameras at a resolution of 1024 � 1024 pixels [26].

Camera calibration was performed for both bats and swallows

(see below) by passing a 1 m long reference object through the

shared field of view and applying a structure-from-motion algor-

ithm [29]. Correspondences between the views were made using
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Figure 1. Trajectories of 20 bats emerging from their cave (blue-green lines;
data point colour indicates frame number) and static objects within the frame
(red lines). Trajectories of the same colour were present concurrently. Data are
shown before smoothing was applied.
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Figure 2. Trajectories of 43 cliff swallows from one bridge site recording. Each
colour represents an individual animal’s trajectory.
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Figure 3. Trajectories of giant danio (blue-green lines) depicted within their
fish tank (red surfaces); shown are (a) untrained giant danio prior to the food
stimulus and (b) trained giant danio after the food stimulus. Each colour and
line represents an individual animal’s trajectory; all animals were present
throughout the recording.
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semi-automated tracking tools, and the three-dimensional trajec-

tories were generated using least-squares reconstruction. The

bats were filmed by the Kunz Bat Lab, and the pre-experiment

planning of the multi-camera recording and the post-processing

of the three video streams was done by the Image and Video

Computing Group, both at Boston University.

2.1.2. Manoeuvring swallows
Cliff swallows (Petrochelidon pyrrhonota) are colonial passerine

birds that tend to nest on cliffs and beneath overhangs. They

are capable fliers, interacting with the elements of their environ-

ment as well as with each other and foraging for insects. Cliff

swallows are typically 0.13 m long with a wingspan of 0.29 m,

weigh 24 g and have an average cruising speed of 5.3 m s21 [30].

Swallow trajectory data were collected near a nesting site at the

North Carolina Highway 751 bridge over Jordan Lake, Chatham

County, NC, USA. Each scene was recorded for 4.75 s at

100 frames per second. The scenes examined here include 21–51

individual swallow trajectories. Trajectories of the cliff swallows

are shown in figure 2.

The swallows were filmed using three IDT N5r cameras out-

fitted with Nikon 20 mm f/28 AF lenses at a resolution of 2336 �
1728 pixels [31]. Calibration was performed using the same

method as for the bats. Objects were tracked and triangulated

between two and three of the cameras to produce the three-

dimensional data [32]. The swallow data were collected by the

Hedrick Lab at the University of North Carolina at Chapel Hill.

2.1.3. Shoaling fish
Danio aequipinnatus are small freshwater fish found in loose

groups in rivers and streams. The animals in the trial were

around 0.053 m in length with a circumference of approximately

0.15 body lengths (8 mm) and weighed 1.7 g [4].

The fish were filmed in a square tank measuring 1.8 m per side

and 1 m deep. During each recording, there were 15 fish in the

tank, and the schools were some combination of naive fish and

fish trained to respond to a food stimulus. Specifically, during

the two weeks prior to the data collection, the trained fish were
exposed to red lights when food was delivered to the tank. The

recordings were captured at 30 frames per second and separated

into 1 min segments before, during and after the food cue [4]. To

minimize the variables for the current study, only datasets with

all untrained or trained fish before and after the food cue were

used for analysis; trajectories are shown in figure 3a,b.

The movements of the fish within the tank were captured

by four Panasonic x300 digital palmcorder cameras [4]. The

video data were processed into three-dimensional trajectories

using the software package tracker3D. Camera calibration

was done using a grid placed on the top and bottom of the

tank. The fish data were collected in the Birdfish Lab under

the direction of Julia Parrish at the University of Washington.

2.1.4. Smoothing
All position data were smoothed using a quintic spline and

Butterworth filter. The fourth-order Butterworth filter was used

to identify higher frequency content associated with noise and

wingbeats, with cut-off frequencies of 8 Hz for bats and birds

and 6 Hz for fish. This high-frequency content was then used to

set the tolerance for a smoothing quintic spline. After smoothing,

the velocities were calculated using finite differencing.

2.2. Behavioural models
The animals may not pay attention to all of the objects around them

so two models, based on metric and on topological distance, are

presented for selecting an influential subset of objects in each

scene to use for the collision avoidance calculations.

2.2.1. Metric distance
Also called a zonal model, this method uses the radial distance

from an animal to classify its interaction with nearby neighbours

as repulsive, aligning or attractive [7], as depicted in figure 4.

The outermost zone within the sensing range of the animal is the
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Figure 4. In the zonal model, radii around the focus animal (black) define
the type of interaction with other animals: those within dr (red) are repulsive,
those between dr and dalign (blue) are neutral or aligning, and those between
dalign and da (green) are attractive. Animals outside of da (grey) are not
sensed or are ignored.
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Figure 5. In the topological distance model, a set of animals nearest the
focal animal (black) is considered to comprise influential neighbours
(green). Animals outside this inner grouping (grey) are not considered by
the focal animal.
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Figure 6. The grey cone with dashed borders depicts the anatomy of a col-
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falls outside the collision cone. The blue cones with solid borders depict col-
lision cones for agents in conflict; potential optima are shown that are within
the maximum velocity constraint (cyan) and as well as those that are infeas-
ible (grey) at locations 1 and 2 on a single collision cone (open and closed
circles, respectively) and location 3 on the intersection of collision cones
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zone of attraction. The simplest variation of this model, which uses

spherical zones, was used for the following analysis. The radius of

the sphere, the (constant) distance of attraction, da, was used to

define the maximum sensing range within which potential col-

lisions are, presumably, detected and avoided. For this study,

da ¼ 3 m for the flying species and da ¼ 3 m for the fish.

2.2.2. Topological distance
The topological distance is described by relative proximity of

animals to the focus animal—this distance is measured in bats/

birds/fish rather than metres, as depicted in figure 5. The

number of animals under consideration remains constant regard-

less of the radial distance from the focus to nearby animals. Thus,

the cognitive load remains relatively constant for any density of

the group, and the animal does not become overwhelmed if a

contraction of the group occurs, for instance. The number of

influential neighbours has been shown to be important in both

flocking birds [8] and schooling fish [7]. In birds, models best

match observed data when six to seven influential neighbours

are considered, which is consistent with the ability of pigeons

to track objects in sets of fewer than seven [33]. For a model of

schooling fish, Viscido et al. [7] showed a relationship between

the number of influential neighbours and group size and that

group size is in turn related to population size; based on the

Viscido model, the number of influential neighbours for a popu-

lation of 15 is seven. The subsequent analysis considers a range

of maximum nearest neighbours, from the single closest animal

up to all animals within sensing range.

2.3. Collision avoidance
Avoiding obstacles is a common goal of mobile systems, both bio-

logical and engineered. The DRCA algorithm is based on two

layers: a deconfliction manoeuvre that brings vehicles out of con-

flict by choosing the safe velocity nearest to the current velocity

and a deconfliction maintenance manoeuvre that ensures conflicts

do not occur in the future [18]; here, only the former component is

used. The algorithm begins by checking to see if a conflict exists. If

a conflict exists, a deconfliction manoeuvre uses the current vel-

ocity and position information of the focus agent and all other

agents within sensing distance to find a safe velocity that requires

minimum deviation from the original velocity.

2.3.1. Conflict definition and detection
Impending collisions must first be perceived before they can be

avoided, so the first step in avoiding collisions is detecting conflict.
A collision occurs when two objects, i and j, come within a specified

minimum separation distance, dsep,ij. The minimum separation dis-

tance, dsep,i, describes the radius of a sphere around object i; the

minimum separation distance for two objects i and j is then

dsep,ij ¼ dsep,i þ dsep,j. Thus, a collision between objects i and j sep-

arated by the relative position vector rij ¼ rj � ri happens when

krijk , dsep,ij.

A conflict occurs when two objects will eventually enter a

collision if their current velocities are maintained. The set of vel-

ocities that will eventually cause a vehicle to collide with another

can be described by a collision cone. The collision cone is con-

structed in velocity space with its vertex at the velocity of the

obstacle, vj, and axis in the direction of the relative position

vector, rij; objects i and j are in conflict if vi falls within the collision

cone generated by vj. The half-angle of the collision cone, a, is cal-

culated from the minimum separation distance and the current

distance between two objects by

a ¼ arcsin
dsep,ij

krijk
:
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Defining b as the angle between the relative position and rela-

tive velocity vectors, that isb ¼ /rij �/vij, where vij ¼ vi � vj, the

criterion for conflict is simply a , b [18]. The collision cone geo-

metry for objects in and out of conflict is shown figure 6, and

stages of conflict identification and resolution are shown in figure 7.

Note that the collision cone geometry also provides a method

of intercepting another agent: selecting the velocity at the intersec-

tion of the collision cone axis with the circle of constant speed is

equivalent to a constant bearing, decreasing range strategy.

2.3.2. Deconfliction algorithm
When a conflict is detected, the optimal safe and feasible velocity

is found. This velocity is selected by the algorithm to be outside

of all collision cones (making it safe) and to require the smallest

deviation from the current velocity (making it optimal) while

satisfying certain speed constraints dependent on the manoeuvre

type (making it feasible). The variable speed manoeuvre requires

that the velocity remain below some maximum speed, allowing

for changes in both speed and direction. Once the potential

optima, v0 i, are found, they are put in order from smallest to lar-

gest deviation from the original velocity, vi, and then each v0 i is

checked for conflicts. By construction of the ordering, the first

conflict-free v0 i is optimal. The potential optima are found at cer-

tain locations defined by the geometry of the collision cone(s)

and velocity constraint, represented by the sphere of maximum

velocity including the nearest point to vi, on

(1) a single collision cone,

(2) the intersection of a collision cone and the spherical shell of

maximum speed,

(3) two collision cones or

(4) the intersection of two collision cones and the sphere of

maximum speed.
In figure 6, locations 1–3 are depicted in a two-dimensional

version of the algorithm. Methods for finding all optima, which

use a combination of closed-form solutions and optimization

equations for numerical methods, can be found in [34].

The evolution of a variable speed deconfliction manoeuvre for

a single agent using the DRCA algorithm is shown in figure 7. The

conflict begins with the red agent travelling horizontally moving

into the detection range of the blue agent which is travelling verti-

cally. The velocity of the blue agent lies within the collision cone

generated by the red agent, indicating a conflict (figure 7a,d). To

avoid collision, the blue agent chooses a new velocity at the edge

of the collision cone nearest the original velocity; in this case, the

blue agent both adjusts its heading clockwise and increases its

speed (figure 7b,e). Once the blue agent has passed the red

agent, potential conflicts are behind it, and it can return to its

original trajectory (figure 7c,f ).

2.4. Data analysis
2.4.1. DRCA with trajectory data
To generate the basis for comparison with the trajectory data, each

animal was in turn considered as the focus (agent i) with the other

animals within the sensing range considered as dynamic obstacles.

For each frame in which the focus animal was present, conflicts

were checked for the positions and velocities of all obstacles

within sensing range. The sensing distance was determined by a

combination of metric and topological distances, so only the near-

est N animals within da of the focus were considered. If a conflict

was present, the deconfliction algorithm was used to calculate

the optimal velocity, v�i . If animals were already closer than the

minimum separation distance and thus considered in a collision,

the frame was excluded from consideration. Also, to exclude any

swallows attempting to land, the DRCA was not applied to

frames where swallow velocity was less than 3 m s21.
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The algorithmic parameters dsep and vmax were determined

based on the biological characteristics of each species. The mini-

mum required separation distance for each of the flying species

was approximately half of the wingspan, dsep,bats ¼ 0:15 m and

dsep,swallows ¼ 0:2 m, and for the fish it was half of a body

length, dsep,fish ¼ ½0:0025 m OR 25 mm�. The speed for the maxi-

mum velocity requirement was set higher than the typical

cruising speed found in the literature for the bats and swallows,

at 11 and 18 m s21, and based on the maximum used in

models of fish behaviour set at 0.6 m s21 (12 body lengths per

second [7]).

The analyses were performed with and without maximum

acceleration bounds on the DRCA velocity. Acceleration bounds

were applied by scaling the difference between the original vel-

ocity and DRCA optimal velocity, that is v�i � vi, to a maximum

acceptable change between frames and using the scaled value as

the optimal for comparison. This scaling was done to provide

more interpretable results in cases where DRCA called for a dra-

matic acceleration because accelerations in the algorithm are

not constrained and have no optimization cost, whereas accelera-

tions by animals are both constrained and costly. Maximum

accelerations for each species were set based on the observed

frame-to-frame accelerations. For the flying species, this value

was equivalent to maximum accelerations of three times gravity,

or 0.23 and 0.3 m s21 change in speed between frames for the

bats and swallows, respectively, and 0.05 m s21 change between

frames for the fish.
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Figure 9. The per cent correlation for each species with (darker bar with
border on the right) and without (lighter bar on the left) acceleration
limits applied to the DRCA optimal velocity. The error bars indicate one stan-
dard deviation above and below the mean per cent correlation (error values
above 100% are not shown).
2.4.2. Comparison metric
For every conflict, each DRCA optimal velocity, v�i , was compared

to the observed velocity, vo
i , defined as the velocity required to get

to the focus animals’ position 50 ms later; this time lapse was

chosen to approximate the animal’s reaction times, as around

half of a locomotor cycle for the flying species [35,36] and one-

sixth of a tail beat cycle for the fish [37]. The metric used was the

normed difference between the velocity vectors in three dimen-

sions, Dv ¼ jjv�i � vo
i jj, and was calculated for each frame in

which the focus animal experienced a conflict. The correlation per-

centage was defined for each animal as the portion of Dv falling

below a threshold, Dvth, defined as 1 m s21, or half of 1 s.d. of vel-

ocities, for the flying species, and 0.4 m s21, or 1 s.d., for the fish.

The mean and standard deviation of the correlation percentage

for all animals that experienced at least one conflict was calculated

for each species. Interactions between animals typically lasted mul-

tiple frames, and each animal involved had a unique Dv; an

example encounter between two swallows is shown in figure 8.
3. Results
In general, avoidance manoeuvres in all three species agreed

with the DRCA optimal velocity. Following our basic stan-

dard for agreement (see §2.4.2), the swallows were in

agreement more than 90% of the time, fish greater than

80% of the time and bats greater than 70% of time (figure 9).

Agreement between DRCA and observed animal motion

was enhanced in all cases by limiting the maximum accelera-

tion used in the avoidance manoeuvre (figure 9), although in

most cases the improvement in agreement between model

and animal was slight.

As expected, increasing the stringency of the standard for

agreement between DRCA and animal motion reduced the

overall correlation between the two (figure 10). The swallows

showed the highest correlation at all levels; however, the rela-

tive order of the bats and fish changed around a single

standard deviation.
Increasing the topological distance from considering a

single animal to all nearby animals does lead to an increase

in correlation between DRCA and the biological data for up

to seven nearest neighbours in all species (figure 11). The size

of the improvement becomes small after considering five near-

est neighbours; however, there was a dearth of instances of

more than three nearest neighbours in the swallow data and

a lack of data points for more than five nearest neighbours in

the bat data when limited to the 3 m metric range.
4. Discussion
Our initial hypotheses that animal motion would agree with

DRCA optimal velocity was supported—we found marked

correlation between DRCA optimal velocity and animal

motion in three evolutionarily, physiologically and

biomechanically distinct vertebrate species.

Our further hypothesis that DRCA-like avoidance

manoeuvres would be most common in flying species (birds

and bats) versus swimming species (fish) was not supported.

The birds (Cliff swallows) did have the highest overall
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agreement with DRCA, but bats (cave bats) had the lowest.

The factors that produced the discrepancy are not clear, but it

may relate to the different sensory systems employed by

birds versus bats (vision versus vision and sonar) or the differ-

ent behavioural contexts represented in the data. The swallows

were in a mixed flock with birds moving in all directions,

whereas the bats were in a directional flock with all animals

generally moving in the same direction; this overall flock

direction may add an additional constraint to behaviour that

reduces correlation with DRCA. Despite the algorithm pre-

venting group alignment or attraction behaviours to meet its

primary objective of avoiding collisions, the correlations are

still quite good.

Topological distance has been shown to be more important

in animal group behaviour, however, metric distance may be

important with regard to collision avoidance, and we exam-

ined fit to DRCA over a range of metric distance thresholds

(see the electronic supplementary material, figure). In general,
results parallel the topological analysis because the conditions

largely overlap, e.g. a small metric distance threshold is likely

to include only one or two topological neighbours, so increases

in the metric threshold correspond to increasing agree-

ment with DRCA in all species. One exception lies in bats,

which exhibit maximum agreement at a non-maximal metric

threshold, suggesting that metric information may play a role

in this species or behaviour; confirmation would require a

larger dataset with a greater range of discordant metric and

topological thresholds.

Although all three species correlated with DRCA, we do

not suggest that the animals are actually using this algorithm.

Instead, we believe that because DRCA operates from a single

agent perspective using limited sensory information, it natu-

rally matches many of the limitations under which animals

operate and therefore produces similar behaviour in many

cases. Thus, investigation of specific cases of agreement or

disagreement between DRCA optimal velocity and actual

animal motion is likely to reveal other trade-offs under which

animals operate. For example, flying animals may prefer avoid-

ance manoeuvres that preserve total (kinetic and potential)

energy, flying up when slowing and down when speeding

up, to avoid having to recreate that energy from metabolic

supplies later. The DRCA algorithm could potentially be

used to investigate ‘higher stakes’ cases of collision avoidance,

such as chases or predator–prey interactions, by comparing the

optimal velocity to that of the fleeing animal; specifically,

increasing the required dsep would simulate a greater desi-

red separation or higher risk scenario and generate larger

magnitude changes in velocity correspondingly.

From the engineering perspective, a similar, more detailed

study of individual conflicts could be used to identify cases

where there are smaller or larger deviations between the algor-

ithm and the observed behaviour in order to determine what

situations lead to more or less agreement. This investigation

could then inform an engineered system when to follow the

algorithm and when to employ more or less conservative

actions based on biological examples.
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