74 research outputs found

    Segrosome assembly at the pliable parH centromere

    Get PDF
    The segrosome of multiresistance plasmid TP228 comprises ParF, which is a member of the ParA ATPase superfamily, and the ParG ribbon–helix–helix factor that assemble jointly on the parH centromere. Here we demonstrate that the distinctive parH site (∼100-bp) consists of an array of degenerate tetramer boxes interspersed by AT-rich spacers. Although numerous consecutive AT-steps are suggestive of inherent curvature, parH lacks an intrinsic bend. Sequential deletion of parH tetramers progressively reduced centromere function. Nevertheless, the variant subsites could be rearranged in different geometries that accommodated centromere activity effectively revealing that the site is highly elastic in vivo. ParG cooperatively coated parH: proper centromere binding necessitated the protein's N-terminal flexible tails which modulate the centromere binding affinity of ParG. Interaction of the ParG ribbon–helix–helix domain with major groove bases in the tetramer boxes likely provides direct readout of the centromere. In contrast, the AT-rich spacers may be implicated in indirect readout that mediates cooperativity between ParG dimers assembled on adjacent boxes. ParF alone does not bind parH but instead loads into the segrosome interactively with ParG, thereby subtly altering centromere conformation. Assembly of ParF into the complex requires the N-terminal flexible tails in ParG that are contacted by ParF

    The role of neutrophils in chorioamnionitis

    Get PDF
    Chorioamnionitis, commonly referred to as intrauterine infection or inflammation, is pathologically defined by neutrophil infiltration and inflammation at the maternal-fetal interface. Chorioamnionitis is the common complication during late pregnancy, which lead to a series of serious consequences, such as preterm labor, preterm premature rupture of the fetal membranes, and fetal inflammatory response syndrome. During infection, a large number of neutrophils migrate to the chorio-decidua in response to chemokines. Although neutrophils, a crucial part of innate immune cells, have strong anti-inflammatory properties, over-activating them can harm the body while also eliminating pathogens. This review concentrated on the latest studies on chorioamnionitis-related consequences as well as the function and malfunction of neutrophils. The release of neutrophil extracellular traps, production of reactive oxygen species, and degranulation from neutrophils during intrauterine infection, as well as their pathological roles in complications related to chorioamnionitis, were discussed in detail, offering fresh perspectives on the treatment of chorioamnionitis

    Dichroism of x-­ray fluorescence under standing waves regime in magnetic periodic multilayers

    Get PDF
    We present the first test of the implementation of a characterization method whose aim is to study the interfaces of magnetic and periodic hetero-structures. The methodology relies on the combination of two techniques, generation of x-ray standing waves and dichroism in x-ray emission. The first one gives the depth selectivity since the maximum of the electric field can be put in specific locations of the stack, the centre of layers or their interfaces, while the second one enables being sensitive to the magnetic character of the atoms present within the stack. To concentrate on the methodology, the well-studied Mg/Co multilayer is analysed by using incident photon of monochromatic energies across the Co L2,3 absorption edge and measuring the intensity of the Co Lαβ emission. Despite large dispersive effects preventing the maxima of the electric field to reach the interfaces of the stack, it has been possible to observe the dichroic signal in the angular distribution of the Co emission intensity, i.e. in the so-called x-ray standing wave curve

    Correlation Analysis Between Required Surgical Indexes and Complications in Patients With Coronary Heart Disease

    Get PDF
    A total of 215 patients with coronary heart disease (CHD) were analyzed with SPSS. Samples of different genders showed significance in the obtuse marginal branch of the left circumflex branch × 1, the diagonal branch D1 × 1, and the ms PV representation. Patients with left circumflex branch occlusion are more male and tend to be younger. Age displayed a positive correlation with left intima-media thickness (IMT) and right IMT. This indicated that as age increases, the values of left IMT and right IMT increase. Samples of different CHD types showed significance in the obtuse marginal branch of the left circumflex branch × 1, the middle part of RCA × 1, and the middle part of the left anterior descending branch × 1.5. For non-ST-segment elevation angina pectoris with acute total vascular occlusion, the left circumflex artery is the most common, followed by the right coronary artery and anterior descending branch. Ultrasound of carotid IMT in patients with CHD can predict changes in left ventricular function, but no specific correlation between left and right common carotid IMT was found. Samples with or without the medical history of ASCVD showed significance in the branch number of coronary vessel lesions. The value of the branch number of coronary vessel lesions in patients with atherosclerotic cardiovascular disease (ASCVD) was higher than in those without ASCVD. The occurrence of complication is significantly relative with the distance of left circumflex branch × 1, the middle segment of left anterior descending branch × 1.5, and the distance of left anterior descending branch × 1. For patients without complications, the values in the distal left circumflex branch × 1, the middle left anterior descending branch × 1.5, and the distal left anterior descending branch × 1 were higher than those for patients with complications. The VTE scores showed a positive correlation with the proximal part of RCA × 1, the branch number of coronary vessel lesions, the posterior descending branch of left circumflex branch × 1, the distal part of left circumflex branch × 1, and the middle part of left anterior descending branch × 1.5

    Highly efficient and irreversible removal of cadmium through the formation of a solid solution

    Get PDF
    Sulfur-containing materials are very attractive for the efficient decontamination of some heavy metals. However, the effective and irreversible removal of Cd2+, coupled with a high uptake efficiency, remains a great challenge due to the relatively low bond dissociation energy of CdS. Herein, we propose a new strategy to overcome this challenge, by the incorporation of Cd2+ into a stable ZnxCd1-xS solid solution, rather than into CdS. This can be realised through the adsorption of Cd2+ by ZnS nanoparticles, which have exhibited a Cd2+ uptake capacity of approximate 400 mg g−1. Through this adsorption mechanism, the Cd2+ concentration in a contaminated solution could effectively be reduced from 50 ppb to 80% uptake capacity for Cd2+, compared with only 9% uptake capacity for similarly-aged FeS particles. This work reveals a new mechanism for Cd2+ removal with ZnS and establishes a valuable starting point for further studies into the formation of solid solutions for hazardous heavy metal removal applications

    Développement de la méthodologie des ondes stationnaires pour sonder les processus physico-chimiques aux interfaces des multicouches périodiques

    No full text
    The interfacial information of periodic multilayers can be crucial for the development of reflecting mirrors which operate in the X-ray and extreme ultraviolet (X-EUV) ranges. Such information may contain the interdiffusion and chemical process at the interfaces of the layers. The idea of this thesis is to apply the X-ray standing wave technique to the characterization of materials, mainly but not limited to the periodic multilayers. X-ray standing wave technique enables to enhance the excitation (photoemission, fluorescence etc.) of specific locations within a periodic stack. The nature of such advantage is the interference of two coherent X-ray beams. One may compare the X-ray standing waves with the mechanical standing waves. The constructive interference at the anti-nodal plane amplifies the electric field; while the destructive interference at the nodal plane minimizes the electric field. In this way, the experimental spectra obtained under standing wave field will be mostly the material located on the anti-nodal plane. Combined with other techniques such as X-ray emission spectroscopy and X-ray photoelectron spectroscopy, a depth-selective information with a sub-nanoscale sensitivity can be obtained.La qualité des interfaces dans les multicouches périodiques est essentielle au développement de miroirs réfléchissant efficacement dans les domaines des rayons X et extrême ultraviolet (X-EUV). De manière générale, la structure des interfaces dépend des possibles interdiffusion et processus chimiques aux interfaces entre couches. L'idée principale de cette thèse est d'appliquer la technique des ondes stationnaires dans le domaine X à la caractérisation de matériaux, principalement mais non exclusivement aux multicouches périodiques. Cette méthode est basée sur l'interférence de deux faisceaux de rayons X cohérents. L'interférence constructive sur un plan anti-nodal amplifie le champ électrique tandis que l'interférence destructive minimise ce dernier sur un plan nodal. Cette technique des ondes stationnaires dans le domaine X permet l'excitation (photoémission, fluorescence, ...) d'endroits spécifiques dans un empilement périodique de matériaux. De cette manière, les spectres expérimentaux ainsi obtenus sont principalement les spectres caractéristiques des atomes situés sur un plan anti-nodal. Combinée avec d'autres techniques expérimentales telles que la spectroscopie d'émission X (XES) ou la spectroscopie de photoélectrons dans le domaine X (XPS), une information sélective en profondeur, avec une sensibilité sub-nanométrique, peut être obtenue

    Aryl-NHC group 13 trimethyl complexes : structural, stability and bonding insights

    No full text
    This first aim of this thesis was to synthesize a series of new N-heterocyclic carbene group 13 metal complexes. The synthesis of the new compounds was achieved using group 13 trimethyl complexes and NHC starting materials. The species produced comprises of aluminium, gallium and indium group 13 metals. Furthermore, reactivity studies have also been carried out on the obtained NHC species with a series of electrophiles. All the structures synthesized have been fully characterized by single crystal X-ray studies, multi-nuclear NMR, IR and mass spectrometry. The second aim of this thesis was to investigate the origin of the range of stability displayed by the newly synthesised complexes. These differences have been assessed using percent buried volume, %VBur, topographic steric maps, dissociation energy, Ediss, and calculated bond snapping energy (BSE) decomposition analysis of the M-NHC bonds (M = Al, Ga and In). The results obtained indicated that the differences in stability observed are mainly attributed to small differences in the steric demands of the NHC ligands. Finally, preliminary investigations to evaluate applicability and efficiency of solvent-free mechanochemical techniques for the synthesis of main group NHC complexes have been carried out. The rapid and high yielding syntheses of NHC gallium and indium trichlorido complexes highlight the potential of this technique.​Doctor of Philosophy (SPMS

    Ship Motion Planning for MASS Based on a Multi-Objective Optimization HA* Algorithm in Complex Navigation Conditions

    No full text
    Ship motion planning constitutes the most critical part in the autonomous navigation systems of marine autonomous surface ships (MASS). Weather and ocean conditions can significantly affect their navigation, but there are relatively few studies on the influence of wind and current on motion planning. This study investigates the motion planning problem for USV, wherein the goal is to obtain an optimal path under the interference of the navigation environment (wind and current), and control the USV in order to avoid obstacles and arrive at its destination without collision. In this process, the influences of search efficiency, navigation safety and energy consumption on motion planning are taken into consideration. Firstly, the navigation environment is constructed by integrating information, including the electronic navigational chart, wind and current field. Based on the environmental interference factors, the three-degree-of-freedom kinematic model of USVs is created, and the multi-objective optimization and complex constraints are reasonably expressed to establish the corresponding optimization model. A multi-objective optimization algorithm based on HA* is proposed after considering the constraints of motion and dynamic and optimization objectives. Simulation verifies the effectiveness of the algorithm, where an efficient, safe and economical path is obtained and is more in line with the needs of practical application

    Synthesis, structural characterisation and stereochemical investigation of chiral sulfur-functionalised N-heterocyclic carbene complexes of palladium and platinum

    No full text
    Palladium and platinum complexes containing a sulfur-functionalised N-heterocyclic carbene (S-NHC) chelate ligand have been synthesised. The absolute conformations of these novel organometallic S-NHC chelates were determined by X-ray structural analyses and solution-phase 2D 1H–1H ROESY NMR spectroscopy. The structural studies revealed that the phenyl substituents on the stereogenic carbon atoms invariably take up the axial positions on the Pd-C-S coordination plane to afford a skewed five-membered ring structure. All of the chiral complexes are structurally rigid and stereochemically locked in a chiral ring conformation that is either (Rs,S,R)-λ or (Ss,R,R)-δ in both the solid state and solution
    corecore