639 research outputs found

    Viral Infection Affects Sucrose Responsiveness and Homing Ability of Forager Honey Bees, Apis mellifera L

    No full text
    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 10⁷ copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.This study was supported by earmarked funds for Modern Agro-industry Technology Research System (No. CARS-45-KXJ3), Nature and Science Foundation Commission of Zhejiang Province (R3080306) to SKS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Majorana solutions to the two-electron problem

    Full text link
    A review of the known different methods and results devised to study the two-electron atom problem, appeared in the early years of quantum mechanics, is given, with particular reference to the calculations of the ground state energy of helium. This is supplemented by several, unpublished results obtained around the same years by Ettore Majorana, which results did not convey in his published papers on the argument, and thus remained unknown until now. Particularly interesting, even for current research in atomic and nuclear physics, is a general variant of the variational method, developed by Majorana in order to take directly into account, already in the trial wavefunction, the action of the full Hamiltonian operator of a given quantum system. Moreover, notable calculations specialized to the study of the two-electron problem show the introduction of the remarkable concept of an effective nuclear charge different for the two electrons (thus generalizing previous known results), and an application of the perturbative method, where the atomic number Z was treated effectively as a continuous variable, contributions to the ground state energy of an atom with given Z coming also from any other Z. Instead, contributions relevant mainly for pedagogical reasons count simple broad range estimates of the helium ionization potential, obtained by suitable choices for the wavefunction, as well as a simple alternative to Hylleraas' method, which led Majorana to first order calculations comparable in accuracy with well-known order 11 results derived, in turn, by Hylleraas.Comment: amsart, 20 pages, no figure

    Evaluation of Cage Designs and Feeding Regimes for Honey Bee (Hymenoptera: Apidae) Laboratory Experiments

    Get PDF
    The aim of this study was to improve cage systems for maintaining adult honey bee (Apis mellifera L.) workers under in vitro laboratory conditions. To achieve this goal, we experimentally evaluated the impact of different cages, developed by scientists of the international research network COLOSS (Prevention of honey bee COlony LOSSes), on the physiology and survival of honey bees. We identified three cages that promoted good survival of honey bees. The bees from cages that exhibited greater survival had relatively lower titers of deformed wing virus, suggesting that deformed wing virus is a significant marker reflecting stress level and health status of the host. We also determined that a leak- and drip-proof feeder was an integral part of a cage system and a feeder modified from a 20-ml plastic syringe displayed the best result in providing steady food supply to bees. Finally, we also demonstrated that the addition of protein to the bees' diet could significantly increase the level of vitellogenin gene expression and improve bees' survival. This international collaborative study represents a critical step toward improvement of cage designs and feeding regimes for honey bee laboratory experiment

    Rapid Degradation of Phenanthrene by Using Sphingomonas sp. GY2B Immobilized in Calcium Alginate Gel Beads

    Get PDF
    The strain Sphingomonas sp. GY2B is a high efficient phenanthrene-degrading strain isolated from crude oil contaminated soils that displays a broad-spectrum degradation ability towards PAHs and related aromatic compounds. This paper reports embedding immobilization of strain GY2B in calcium alginate gel beads and the rapid degradation of phenanthrene by the embedded strains. Results showed that embedded immobilized strains had high degradation percentages both in mineral salts medium (MSM) and 80% artificial seawater (AS) media, and had higher phenanthrene degradation efficiency than the free strains. More than 90% phenanthrene (100 mg·L−1) was degraded within 36 h, and the phenanthrene degradation percentages were >99.8% after 72 h for immobilized strains. 80% AS had significant negative effect on the phenanthrene degradation rate (PDR) of strain GY2B during the linear-decreasing stage of incubation and preadsorption of cells onto rice straw could improve the PDR of embedded strain GY2B. The immobilization of strain GY2B possesses a good potential for application in the treatment of industrial wastewater containing phenanthrene and other related aromatic compounds

    Striatopallidal dysfunction underlies repetitive behavior in Shank3-deficient model of autism

    Get PDF
    The postsynaptic scaffolding protein SH3 and multiple ankyrin repeat domains 3 (SHANK3) is critical for the development and function of glutamatergic synapses. Disruption of the SHANK3-encoding gene has been strongly implicated as a monogenic cause of autism, and Shank3 mutant mice show repetitive grooming and social interaction deficits. Although basal ganglia dysfunction has been proposed to underlie repetitive behaviors, few studies have provided direct evidence to support this notion and the exact cellular mechanisms remain largely unknown. Here, we utilized the Shank3B mutant mouse model of autism to investigate how Shank3 mutation may differentially affect striatonigral (direct pathway) and striatopallidal (indirect pathway) medium spiny neurons (MSNs) and its relevance to repetitive grooming behavior in Shank3B mutant mice. We found that Shank3 deletion preferentially affects synapses onto striatopallidal MSNs. Striatopallidal MSNs showed profound defects, including alterations in synaptic transmission, synaptic plasticity, and spine density. Importantly, the repetitive grooming behavior was rescued by selectively enhancing the striatopallidal MSN activity via a Gq-coupled human M3 muscarinic receptor (hM3Dq), a type of designer receptors exclusively activated by designer drugs (DREADD). Our findings directly demonstrate the existence of distinct changes between 2 striatal pathways in a mouse model of autism and indicate that the indirect striatal pathway disruption might play a causative role in repetitive behavior of Shank3B mutant mice.National Institute of Mental Health (U.S.) (Grant 5R01MH097104

    Temporal and spatial variability of dissolved organic and inorganic phosphorus, and metrics of phosphorus bioavailability in an upwelling-dominated coastal system

    Get PDF
    Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 110 (2005): C10S13, doi:10.1029/2004JC002837.High-frequency temporal and spatial shifts in the various dissolved P pools (total, inorganic, and organic) are linked to upwelling/relaxation events and to phytoplankton bloom dynamics in the upwelling-dominated Oregon coastal system. The presence and regulation of alkaline phosphatase activity (APA) is apparent in the bulk phytoplankton population and in studies of cell-specific APA using Enzyme Labeled Fluorescence (ELF®). Spatial and temporal variability are also evident in phytoplankton community composition and in APA. The spatial pattern of dissolved phosphorus and APA variability can be explained by bottom-controlled patterns of upwelling, and flushing times of different regions within the study area. The presence of APA in eukaryotic taxa indicates that dissolved organic phosphorus (DOP) may contribute to phytoplankton P nutrition in this system, highlighting the need for a more complete understanding of P cycling and bioavailability in the coastal ocean.KCR acknowledges WHOI for rapid-response funding that made possible participation on this first COAST cruise, and NSF-OCE grant 0119134 for support of subsequent work on these and other COAST samples

    Evidence for the linked biogeochemical cycling of zinc, cobalt, and phosphorus in the western North Atlantic Ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 22 (2008): GB4012, doi:10.1029/2007GB003119.Many trace metals such as iron, copper, and manganese have lower concentrations in the surface waters of the North Pacific Ocean than in North Atlantic surface waters. However, cobalt and zinc concentrations in North Atlantic surface waters are often as low as those reported in the North Pacific. We studied the relationship between the distribution of cobalt, zinc, and phosphorus in surface waters of the western North Atlantic Ocean. Both metals show strong depletion in the southern Sargasso Sea, a region characterized by exceedingly low dissolved inorganic phosphorus (generally <4 nmol L−1) and measurable alkaline phosphatase activity. Alkaline phosphatase is a metalloenzyme (typically containing zinc) that cleaves phosphate monoesters and is a diagnostic indicator of phosphorus stress in phytoplankton. In contrast to the North Pacific Ocean, cobalt and zinc appear to be drawn down to their lowest values only when inorganic phosphorus is below 10 nmol L−1 in the North Atlantic Ocean. Lower levels of phosphorus in the Atlantic may contribute to these differences, possibly through an increased biological demand for zinc and cobalt associated with dissolved organic phosphorus acquisition. This hypothesis is consistent with results of a culture study where alkaline phosphatase activity decreased in the model coccolithophore Emiliania huxleyi upon zinc and cobalt limitation.This research was supported by NSF grant OCE- 0136835 to J.W.M. and S.D. R.W.J. was supported by an EPA STAR Fellowship
    corecore