373 research outputs found

    SAFA : a semi-asynchronous protocol for fast federated learning with low overhead

    Get PDF
    Federated learning (FL) has attracted increasing attention as a promising approach to driving a vast number of end devices with artificial intelligence. However, it is very challenging to guarantee the efficiency of FL considering the unreliable nature of end devices while the cost of device-server communication cannot be neglected. In this paper, we propose SAFA, a semi-asynchronous FL protocol, to address the problems in federated learning such as low round efficiency and poor convergence rate in extreme conditions (e.g., clients dropping offline frequently). We introduce novel designs in the steps of model distribution, client selection and global aggregation to mitigate the impacts of stragglers, crashes and model staleness in order to boost efficiency and improve the quality of the global model. We have conducted extensive experiments with typical machine learning tasks. The results demonstrate that the proposed protocol is effective in terms of shortening federated round duration, reducing local resource wastage, and improving the accuracy of the global model at an acceptable communication cost

    Model Reduction of Discrete-time Interval Type-2 T-S Fuzzy Systems

    Get PDF

    Hankel Norm Model Reduction of Discrete-Time Interval Type-2 T-S Fuzzy Systems with State Delay

    Get PDF

    PENGARUH DUKUNGAN SOSIAL ORANG TUA DAN TEMAN SEBAYA TERHADAP KEPERCAYAAN DIRI REMAJA

    Get PDF
    Banda Ace

    FedProf: Selective Federated Learning with Representation Profiling

    Get PDF
    Federated Learning (FL) has shown great potential as a privacy-preserving solution to learning from decentralized data that are only accessible to end devices (i.e., clients). In many scenarios however, a large proportion of the clients are probably in possession of low-quality data that are biased, noisy or even irrelevant. As a result, they could significantly slow down the convergence of the global model we aim to build and also compromise its quality. In light of this, we propose FedProf, a novel algorithm for optimizing FL under such circumstances without breaching data privacy. The key of our approach is a data representation profiling and matching scheme that uses the global model to dynamically profile data representations and allows for low-cost, lightweight representation matching. Based on the scheme we adaptively score each client and adjust its participation probability so as to mitigate the impact of low-value clients on the training process. We have conducted extensive experiments on public datasets using various FL settings. The results show that FedProf effectively reduces the number of communication rounds and overall time (up to 4.5x speedup) for the global model to converge and provides accuracy gain.Comment: 23 pages (references and appendices included

    Fuzzy-Affine-Model-Based Output Feedback Dynamic Sliding Mode Controller Design of Nonlinear Systems

    Get PDF

    RISK PRIORITY EVALUATION OF POWER TRANSFORMER PARTS BASED ON HYBRID FMEA FRAMEWORK UNDER HESITANT FUZZY ENVIRONMENT

    Get PDF
    The power transformer is one of the most critical facilities in the power system, and its running status directly impacts the power system's security. It is essential to research the risk priority evaluation of the power transformer parts. Failure mode and effects analysis (FMEA) is a methodology for analyzing the potential failure modes (FMs) within a system in various industrial devices. This study puts forward a hybrid FMEA framework integrating novel hesitant fuzzy aggregation tools and CRITIC (Criteria Importance Through Inter-criteria Correlation) method. In this framework, the hesitant fuzzy sets (HFSs) are used to depict the uncertainty in risk evaluation. Then, an improved HFWA (hesitant fuzzy weighted averaging) operator is adopted to fuse risk evaluation for FMEA experts. This aggregation manner can consider different lengths of HFSs and the support degrees among the FMEA experts. Next, the novel HFWGA (hesitant fuzzy weighted geometric averaging) operator with CRITIC weights is developed to determine the risk priority of each FM. This method can satisfy the multiplicative characteristic of the RPN (risk priority number) method of the conventional FMEA model and reflect the correlations between risk indicators. Finally, a real example of the risk priority evaluation of power transformer parts is given to show the applicability and feasibility of the proposed hybrid FMEA framework. Comparison and sensitivity studies are also offered to verify the effectiveness of the improved risk assessment approach
    corecore