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Abstract—Federated learning (FL) has attracted increasing
attention as a promising approach to driving a vast number
of end devices with artificial intelligence. However, it is very
challenging to guarantee the efficiency of FL considering the
unreliable nature of end devices while the cost of device-server
communication cannot be neglected. In this paper, we propose
SAFA, a semi-asynchronous FL protocol, to address the problems
in federated learning such as low round efficiency and poor
convergence rate in extreme conditions (e.g., clients dropping
offline frequently). We introduce novel designs in the steps of
model distribution, client selection and global aggregation to
mitigate the impacts of stragglers, crashes and model staleness
in order to boost efficiency and improve the quality of the
global model. We have conducted extensive experiments with
typical machine learning tasks. The results demonstrate that the
proposed protocol is effective in terms of shortening federated
round duration, reducing local resource wastage, and improving
the accuracy of the global model at an acceptable communication
cost.

Index Terms—distributed computing, machine learning, edge
intelligence, federated learning

I. INTRODUCTION

With the prevalence of Internet of Things (IoT), the advance
in Machine Learning (ML) techniques stimulates the demand
of compute capacity significantly from a broad range of
applications which more or less integrate Artificial Intelligent
(AI) into the edge and end devices to empower their underlying
business logic. By 2022, more than 80% of enterprise IoT
projects are expected to have AI components embedded [1].
Also, it has been an emerging trend that users are becoming
more sensitive to the data privacy protection mechanism of AI
applications, while their performance, in many cases, is still
expected to be guaranteed in the first place.

It is promising for intelligent applications to learn their
models on massively distributed data. However, there are still
several obstacles to date. First, it is unrealistic to collect
decentralized data constantly from all the end devices and store
them in a centralized location, which can probably cause a lot
of potential risks (e.g., data leakage) and poses privacy threats
to end users. Second, it could be communication-intensive to
train a global model using traditional optimization methods,
no matter in a cloud-central or a distributed manner. On-cloud
centralized training incurs heavy load (as well as big risks) in
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data transfer when moving the data from the edge of network
to the cloud, whilst most distributed optimization approaches
incur fairly frequent communications between devices and
the cloud in order to exchange gradients (of a mini-batch,
typically) and weights. However, in practical circumstances
(e.g., edge computing environments), the devices are hardly
reliable and the cost of communication can be prohibitive.
For example, devices may drop offline intermittently and data
transfer is charged in cellular networks.

Privacy concerns may prohibit moving data outside local
devices. Machine learning in such environments is challenging
due to the following properties: 1) Unbalanced and biased
data distribution: the end devices may own a variable amount
of on-device data and the distribution of the data in different
devices may be different; 2) Massive distribution: it is
usual to see a huge fleet of disparate devices at the edge as
participants; 3) Unreliability: either the devices themselves
and the connection to the cloud are unreliable. End devices
could opt out occasionally or go offline unexpectedly. The
communication could be expensive.

Federated Learning (FL) [2][3], a promising framework,
was proposed by Google to address the aforementioned chal-
lenges. The work presents a distributed solution (i.e., Federated
Optimization) to optimizing a global machine learning model
without moving data out of local devices, and introduces
FedAvg as an optimization protocol in federated setting. Rather
than collecting gradients from clients (i.e., end devices), Fe-
dAvg adopts a different approach, in which multiple iterations
of local updates (using gradient descent) are followed by
a global aggregation that takes a weighted average of the
resulting models from the clients. An obvious advantage of
FedAvg is the reduction of communication frequency. FedAvg
and many implementations of FL systems (e.g., [4]) adopt
synchronous training protocols to avoid the prohibitive number
of updates. Although synchronous protocols seem to be the
natural choice for the FL setting, a number of limitations
stand out as follows: 1) Unreliable fraction of effective
participants: in each round, the server selects a fraction of
clients randomly to perform local training and expects them
to commit their local training results. However, the number
of clients which manage to commit their results are very
uncertain given the unreliable nature of end devices; 2) Low
round efficiency: To aggregate the local results at the end
of each round, FedAvg has to wait for all selected clients to
finish, among which there may be stragglers while the crashed
ones may never respond. Consequently, the global learning
progress is suspended until a timeout threshold is reached; 3)
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Under-utilization of clients: With random selection, many
capable clients are likely to remain idle even if they are ready
and willing to participate in the training; 4) Progress waste:
The selected clients may not finish local training in time, and
the progress made could be wasted because the client will be
forced to overwrite its local model with the global model next
time when the client is selected again.

In this paper, we propose a Semi-Asynchronous Federated
Averaging (SAFA) protocol based on FedAvg [3] to achieve
fast, lag-tolerant federated optimization. SAFA takes advan-
tage of several efficiency-boosting features from asynchronous
machine learning approaches (e.g., [6][9]) while making use
of a refined pace steering mechanism to mitigate the impact
of straggling clients and stale models (i.e., staleness [9]) on
the global learning progress. Moreover, we adopt a novel
aggregation algorithm that exploits a cache structure (in the
cloud) to bypass a fraction of client updates so as to improve
convergence rate at a low cost of communication. The main
contributions of our work are outlined as follows:
• We take into account the unreliability and heterogeneity

of end devices and propose a Semi-Asynchronous Feder-
ated Averaging (SAFA) protocol to alleviate the staleness,
boost efficiency and better utilize the progress made by
stragglers.

• We introduce a simple hyper-parameter, lag tolerance, to
flexibly control the behavior of SAFA protocol. We also
empirically analyze the impact of lag tolerance on SAFA
by observing how it affects the critical metrics such as
synchronization ratio and version variance.

• We conducted extensive experiments to evaluate SAFA
on several typical machine learning tasks in multiple FL
settings varying from tiny to relatively large-scale edge
environments. SAFA is evaluated in terms of several im-
portant metrics such as model accuracy, round efficiency
and communication cost.

The rest of this paper is organized as follows: Section II
summarizes some relevant studies on distributed learning and
federated learning. In Section III, we formulate the optimiza-
tion problem for FL, detail the design of SAFA and analyze
the impact of the hyper-parameter in SAFA. In Section IV, we
present and discuss the experimental results. We conclude this
paper in section V.

II. RELATED WORK

The fusion of Edge Computing and Artificial Intelligence
(i.e., Edge Intelligence [11][12]) has emerged as a new focus
of research ever since we began to realize the potential benefits
of sinking the computation to and outside the edge whilst the
increasing capacity of end devices makes it natural to empower
them with AI and support the applications such as intelligent
surveillance [21] and mobile keyboard prediction [22] at the
edge.

Distributed machine learning is believed to be an ideal
solution for big data analytics according the rule ”mov-
ing computation closer to data”. However, the majority of
distributed ML approaches (e.g., [14][15][16]) claim their
efficacy based on the conditions such as homogeneity [16],

high-performance nodes, ultra-fast connections [17] and so
on, which are unrealistic in edge computing or IoT environ-
ment. In fact, end devices in an edge environment can be
fairly unreliable, highly heterogeneous in performance and
have limited communication. The limitation of data access
is another prominent issue. Many distributed ML approaches
cannot achieve the desired accuracy without making the entire
dataset available to every worker. However, it is impossible in
many situations to gather the data from a massive number of
distributed devices given the expensive communication (via
cellular networks) and, most importantly, the data privacy
requirements by end users [18].

Federated Learning (FL) [3], first proposed by Google, is a
new approach to fitting machine learning into the edge. The
survey by Zhou et al. [13] summarizes recent studies on edge
intelligence and lists FL as one of the most uprising technolo-
gies for distributed training at the edge. As the primitive FL
protocol, FedAvg [3] was designed to perform synchronous
optimization in federated settings. Xie et al. [9] proposed
FedAsync, an asynchronous federated optimization scheme
that regularizes local optimization and adopts the non-blocking
update of the global model. A similar protocol has been
exploited by Sprague et al. [10] in a geo-spatial application for
training a global model asynchronously, allowing the devices
to join halfway. However, the main issue of the asynchronous
approaches is that the server may receive too many local
updates sent from a massive number of clients that remain
active, which could overwhelm the server but with little benefit
to the model convergence.

In terms of model accuracy, Chen et al. [5] experimentally
demonstrated that synchronous Stochastic Gradient Descent
(SGD) can outperform asynchronous approaches in the data
center setting, which to some extent inspired the synchronous
design of FL. A number of variants have been proposed to
mitigate the deficiencies of FL from different aspects such as
round efficiency [20] and communication cost [2]. Wang et al.
[19] proposed a control algorithm that adaptively determines
the interval of global aggregation under a given resource
budget. To address the inefficiency of FL under poor wireless
channel conditions, Nishio and Yonetani [20] implemented a
mobile edge computing (MEC) framework in which a protocol
is designed to filter out slow clients based on the estimation of
the clients’ work time at the selection stage and consequently
shorten round length. However, their scheme relies on accurate
estimation and does not take the client unreliability into
account.

How to speedup the convergence rate of FL remains an
open challenge. On this point, we argue that the optimiza-
tion mechanisms for traditional distributed SGD have great
potential in FL. For example, gradient staleness control has
been shown critical to guarantee convergence [23]. Dutta et al.
[24] theoretically characterized the trade-off between reducing
error (by including more stragglers) and shortening run time
(by bounding staleness). Wang et al. [25] refined ASGD by
modulating the learning rate based on the staleness of incom-
ing gradients. Smith et al. [8] proposed MOCHA, a fault- and
straggler-tolerant multi-task learning method without forging
a global model. Chen et al. [7] introduced backup workers
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to reduce server waiting time in synchronous stochastic op-
timization. Inspired by these approaches, we investigate the
impact of straggling clients and model staleness on FL, and
design a fast FL protocol that is well adapted to unreliable
environments.

III. THE SAFA PROTOCOL

The proposed Semi-Asynchronous Federated Averaging
(SAFA) protocol is designed to solve the global optimization
problem as below:

arg min
w∈Rd

1

n

n∑
i=1

f(w;xi, yi) (1)

where w denotes the parameters of the global model (the
number of parameters = d), f(w;xi, yi) represents the loss
of the inference on sample (xi, yi) made by the model with w
as its parameters. Note that data samples are distributed among
disparate end devices, which are called clients in FL settings.
Let M denote the set of m clients, and Dj the partition of data
residing in client j, then the target function can be rewritten
as:

arg min
w∈Rd

1

n

m∑
j=1

∑
i∈Dj

f(w;xi, yi) (2)

Note that the problem definition here is in accordance with
[3], but is different from [9]. Xie et al. [9] define their target
function as the average of the average loss (on local partitions),
which is fair at the local partition level but not the case at the
sample level, because data samples in small local partitions
take larger weights in their target function.

In this section, we present the workflow of SAFA with the
underlying design principles in detail. As a refined FL pro-
tocol, SAFA consists of three operations: lag-tolerant model
distribution, post-training client selection and discriminative
aggregation. A typical FL process driven by SAFA is shown
in Fig. 1. We will use this diagram as an example throughout
this paper to illustrate our FL training process.

For clarity, we list in Table I the symbols frequently used
in this paper.

TABLE I
LIST OF SYMBOLS

Symbol Description
D the complete dataset
n the size of D (i.e., n = |D|)
Di the data partition on client i
ni the size of client i’s local partition
M the set of clients (i.e., end devices)
m total number of clients
vi the version of client i’s local model
Mv the set of clients whose model version is v
P the set of picked clients
Pv the set of picked clients of version v
K the set of crashed clients
Kv the set of crashed clients of version v
W the set of clients that complete local training
Q the set of undrafted clients
Qv the set of undrafted clients of version v
w parameters of the global model
wk parameters of the local model on client k

A. Lag-tolerant Model Distribution
In the federated setting, an important guarantee for the

convergence of the global model is the quality of local models.
The quality of a local model depends on whether local training
is sufficient (i.e., training sufficiency) and on the starting model
on which local training is based. Training sufficiency can be
achieved by allowing adequate local iterations (i.e., epochs),
while the version control is a non-trivial task. The original FL
algorithm [3] prevents outdated clients with stale models from
committing, which simplifies FL process but also throttles the
potential of accelerating convergence.

Motivated by the problem, we first present a lag-tolerant
model distribution algorithm which does not always enforce
synchronization (i.e., allows some clients to stay asynchronous
with the cloud) and is tolerant to outdated local models (i.e.,
staleness). The key idea is to develop a better way to get the
stragglers (i.e., clients with stale models) involved in the model
aggregation and leverage their progress for faster federated
learning. In this paper, we refer stragglers to the clients
who are slow and still conducting local training based on an
outdated model. Normally, the clients are supposed to start
epochs of training based on the latest global model received
from the server. However, device crashes or network problems
generate the stragglers inevitably.

With a version-based criterion, SAFA only requires specific
clients to retrieve the latest global model from the server.
Before a round of local training starts, the server classifies
all clients into three states (or categories) based on their
current versions: Up-to-date, deprecated and tolerable, which
are defined as follows.

Definition 1: Up-to-date clients: the clients that have com-
pleted the previous round of local training (and submitted
models successfully) are reckoned up-to-date at the start of
this round.

Definition 2: Deprecated clients: the clients that still base
local training on the models that are too stale compared to the
version of the global model.

Definition 3: tolerable clients: the clients that do not base
local training on the latest global model, but the model version
they are based on is not too old either. This is a state that stands
between Up-to-date and Deprecated.

SAFA only requires the up-to-date and deprecated clients
to synchronize with the server, while the tolerable clients
stay asynchronous with the server. This is why SAFA is
called a semi-asynchronous distributed training scheme. We
let up-to-date clients synchronize with the server in order to
prevent model divergence [3]. Deprecated clients are forced to
synchronize so that the global model will not be poisoned by
the seriously outdated local models.

After a round of local training is completed on device,
the clients will then be labeled picked, undrafted or crashed
based on the result of client selection in SAFA, which is a
post-training process. The server tags clients with these labels
after the selection quota is met or the round time limit is
reached. The picked clients are those whose local training
results in this round are selected to be used in the following
aggregation step. The undrafted clients are those whose local
training results are not selected but still get cached by the
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Fig. 1. The diagram of SAFA protocol showing the interaction between the cloud and end clients in different states

server for future use. Crashed clients are those who fail to
finish a round of local training - clients can either opt out or
drop offline intermittently (i.e., any time during training) with
a certain probability (which we refer to as crash probability).

In Fig. 1 we illustrate the workflow of SAFA with four end
devices: clients A to D, with which the system is to perform
several federated rounds of training. Clients start local training
from their local model versioned A0 to D0 (the initial model
version for each round of local training is depicted in the figure
by a single circle with the model version in the middle). After a
client completes its local training, local parameters are updated
(depicted by double circles with the model version in it) and
are uploaded to the server (depicted by upwards arrows). The
server selects submitted results only from a portion of clients
(the client portion is 50% in this example) to update the global
model. The clients whose updates are selected are tagged as
picked clients (colored green), for example, clients B and C
in the 1st round. The selected updates are placed in a cache
structure by the server. The cache maintains the entries of
the latest local models uploaded from the picked clients and
will be used for aggregation. The clients whose results are not
selected are undrafted clients (colored blue), e.g., client A in
round 1 and client B in round 2. Updates from these clients
are stored in the bypass structure to avoid futile work locally.
The clients who cannot complete their local training due to
any reason (such as opt-out or network failure) are crashed
clients (highlighted red), such as client D in the 1st round.

Each round ends with a new version of global model (i.e.,
G1 to G3 in this diagram), which, at the start of the next
round, will be distributed to (i.e., synchronized with) the up-
to-date and deprecated clients. In the first round, for example,
A, B and C successfully complete local training and upload

their updates (in spite of A being undrafted), thus they become
up-to-date clients (i.e., tagged up-to-date by the server). The
results of undrafted clients will not be merged into the global
model in the upcoming aggregation step, but may take effect
in future rounds via a bypass structure (squares with dashed
lines) that saves these updates temporarily. The bypass will
merge with the cache right after the current aggregation step
before the next round starts.

In this example, we assume the maximum tolerable version
lag is 2. In Fig. 1, client D does not manage to finish local
training in two rounds. Therefore, it is tagged deprecated and
forced to synchronize with the server, which means client
D needs to replace its stale local model with the latest
global model. To decide whether a local update should be
accepted, here we adopt a simple criterion based on the
difference between the versions of the global model and the
local model, which is called lag tolerance. Therefore, the
deprecated clients are those whose local version lags behind
the version of the global model by more than the specified lag
tolerance. Specifically, our lag-tolerant distribution principle
can be formulated as follows:

wk(t) =


w(t− 1) if k ∈

⋃
v=t−1Mv, or k ∈

⋃
v<t−τ Mv,

// up-to-date or deprecated clients
wk(t− 1) if k ∈

⋃
t−τ≤v<t−1Mv

// tolerable clients
(3)

where w(t − 1) denotes the latest global model parameters
(i.e., the aggregation result from last round) upon the start of
round t, and wk denotes the parameters of client k’s local
model; τ stands for lag tolerance, which is the only hyper-
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parameter in SAFA. The lag-tolerant model distribution forces
the up-to-date and deprecated clients to adopt the latest global
model as the base model for the next round of training, while
the tolerable clients can continue to work on their previous
local results. The hyper-parameter lag tolerance in some ways
controls the tradeoff between communication overhead and
the convergence rate of federated optimization. If it is set too
small, the server may suffer heavy downlink transmission as
the portion of deprecated clients increases. If it is set too large,
the convergence of the global model could be unsteady. The
impact of Lag tolerance will be analyzed later with empirical
studies.

B. Client Selection

An important property of end devices is unreliability, which
means that they occasionally drop offline for some reasons
such as power outage (or low battery level), inaccessible
network or manual shutdown/opt-out of training. In this paper,
we refer to these temporarily unavailable states as crashed.
Every client has a certain probability to crash in each round
of training. For clients that stay active and connected to the
central server (throughout a round of training), we assume they
are always able to finish the task assigned within a certain
period of time (otherwise they are also reckoned crashed).

The population of committed updates should be carefully
limited considering a huge fleet of end devices [27]. McMahan
et al. [3] use a hyper-parameter C to control the maximum
fraction of clients allowed to participate in one round of
training. Moreover, C serves as the criterion in the FedAvg [3]
protocol by which the server keeps waiting for selected clients
to end an global round. In our approach, we retain this hyper-
parameter but no longer apply it as a hard constraint. Instead,
we release the restriction to allow all clients to participate if
they are willing to, and enable the central server to end a round
once C-fraction of updates have been received.

Apparently, the efficiency of federated optimization is
closely associated to the fraction of picked clients. One may
think that we can set C to a large value (e.g., close to 1.0) and
pick as many clients into each round as possible. However, it
is neither realistic nor beneficial to do so. On the one hand,
allowing more clients to participate increases the potential risk
of uplink congestion and the communication cost as well.
In each round, the server may have to wait for more clients
among which some may never respond (because picked clients
could crash midway). On the other hand, involving a large
number of updates leads to limited benefit to the global model
especially in the last few rounds before convergence [3].

It is notable that the fraction of selected clients (called
selection fraction) is not equivalent to the actual fraction of
clients that finish local training and commit their models in
time. In an unreliable environment, picked clients can crash
halfway in their training progress or fail to upload their trained
models. In this paper, we define a metric termed Effective
Update Ratio (EUR) to measure the fraction of effective
updates from the local (i.e., all clients) to the cloud (i.e., central
server(s)).

EUR =
|P − P ∩K|
|M |

(4)

where P and K are the sets of picked and crashed clients,
respectively. Obviously EUR is positively correlated with
the size of P and negatively correlated with that of K. As
mentioned, simply increasing the pick fraction can bring about
problems in the FL context, while the crash of clients is
not predictable or controllable (improving client stability is
beyond the scope of this paper). As a solution, we propose to
let the central server collect local update after local training
instead of randomly selecting clients at the very beginning
of a global round. This means the server does not need
to wait for those designated clients for aggregation but are
able to execute the aggregation step once it has received a
C-fraction of update. Our post-training selection effectively
decouples the server with the selected clients and consequently
improves EUR, which facilitates faster convergence of the
federated optimization. Another advantage of doing so is a
significant boost of round efficiency in the case the clients
crash with a fairly high probability. Based on the outcome
of selection (before the aggregation step is carried out), the
server tags the clients with three different labels: crashed,
picked and undrafted. Only picked clients are eligible to update
its corresponding cache entry right before the aggregation
conducted by the central server. Undrafted clients also commit
their updates but their updates will bypass the following
aggregation.

Considering the ”selection-ahead-of-training” scheme used
in the synchronous FL (e.g., FedAvg [3]), its effective update
ratio, according to Eq. (4), is C(1− |K||M | ). By contrast, SAFA
adopts a ”selection-after-training” scheme that theoretically
yields the value of EUR as follows:

EUR =

{
1−R if C ≥ 1−R,
C if C < 1−R

(5)

where C is the selection fraction and R denotes the crash ratio
over all the clients (i.e., R = |K|

|M | ). Fig. 2 demonstrates how
SAFA promotes the effective update ratio in FL - involving as
many clients as possible to fulfill the fraction C.

From Fig. 2 and considering (4), we can see a clear im-
provement of EUR by SAFA, which minimizes the negative
impact of clients’ failure. Nevertheless, extremely high crash
ratio of clients will still cause a low value of EUR even with
our selection method. The phenomenon will be analyzed later
in our experiment section.

As figured out by Bonawitz et al. [4], bias is introduced if
each device is equally likely to participate each round because
they differ in performance and network access privilege. The
problem remains if we merely use the client selection method
mentioned above. Therefore, we further propose to alleviate
the bias using a compensatory client selection algorithm. The
principle is simple – higher priority is given to those clients
that are less involved. In each round the server maintains a list
of IDs of clients that missed the previous round of training,
and their updates will be picked prior to others for the coming
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Fig. 2. The diagram shows the client selection policies by FedAvg and SAFA.
The selection fraction is C in both policies. SAFA picks C-fraction of clients
if no less than C fraction of clients uploaded their local models (i.e., updates).
Otherwise it will pick all clients that have committed the local models. A
square in the diagram represents the full client set M . K and P are the sets
of crashed and picked clients, respectively.

aggregation. The pseudo-code of our selection policy is shown
in Algorithm 1.

Algorithm 1: Compensatory First-Come-First-Merge
(CFCFM) client selection

Input : round number t, client set M , last-round
picked clients P (t− 1), selecting fraction C,
round deadline Tlim

Output: clients to pick P (t)
P (t) = ∅
Q(t) = ∅
quota = C · |M |
while |P (t)| < quota and Tround < Tlim do

Await new updates
w′k ← update arrives from client k
if k not in P (t− 1) then

add k to P (t)
else

add k to Q(t)
end

end
if |P (t)| < quota then

Sort Q(t) by arrival time
q ← quota− |P (t)|
P ′(t)← first q clients in Q(t)
Q(t)← Q(t)− P ′(t)
P (t)← P (t) + P ′(t)

end
return P (t)

In the selection, we stop involving more clients once the
quota has been met, namely C-fraction of clients have been
selected from P (t − 1) ∩ W (t). Otherwise the algorithm
continues to wait and accept the updates (until a deadline is
reached) from the rest of clients which, in practice, will arrive
at the cloud successively.

C. Discriminative Aggregation

After a round of local training completes, the server has
received a collection of updates from the end devices. We
adopt three steps to aggregate local updates. The first step
is the pre-aggregation cache update, which overwrites the
corresponding entries (for storing model parameters) of the
selected clients in the cache. In the second step, the updates
stored in the cache are aggregated. In the third step, the
undrafted updates are placed in the cache, which can be used
in the next round of global model aggregation. Since the
picked and undrafted updates are treated in a different manner
in the aggregation, it is called the three-step discriminative
aggregation, which is formally formulated as follows:
(1) Pre-aggregation Cache Update:

w∗k(t) =


w′k(t) if k ∈ P (t),
w(t− 1) if k ∈

⋃
v<t−τ Mv(t),

w∗k(t− 1) otherwise
(6)

where w∗k(t) denotes the k-th entry of the cache structure (see
Fig. 1), and w′k(t) denotes the trained local model at round t.
Entries of deprecated clients will be replaced with the global
model w(t− 1).
(2) SAFA Aggregation:

w(t) =

m∑
k=1

nk
n
w∗k(t) (7)

(3) Post-aggregation Cache Update:

w∗k(t+ 1) =

{
w′k(t) if k ∈ Q(t),

w∗k(t) otherwise
(8)

where P (t), Q(t), and K(t) denote the sets of picked, un-
drafted, and crashed clients, respectively in round t.

For SAFA, there are three cases of changes in the cache
after a global around t. For picked clients, their updates will be
kept in the cache after being merged into the global model. For
undrafted clients, the updates will not take effect in this round
but will be carried to the next round by the post-aggregation
step. For the crashed clients, their entries stay unchanged only
if they have not been deprecated. Otherwise these entries will
be replaced by the global model (i.e., w(t − 1) in Eq. 6) to
avoid heavy staleness.

Now we can present the complete workflow of the proposed
SAFA protocol outlined in Algorithm 2. The server orches-
trates the process holistically in rounds. At the beginning of
each round, the server first checks the version of clients and
distributes the latest global model in a lag-tolerant manner (see
Eq. 3) given the hyper-parameter τ . Then the server begins
to listen and collects the updates (i.e., trained local model)
from clients. Clients train their native models on local datasets
using the gradient descent method. Based on Algorithm 1, the
clients missing the previous round will have the priority to be
selected to meet the pre-set fraction C. Following the client
selection, the server then executes the three-step discriminative
aggregation, which merges all the entries in the cache into
the global model, i.e., w(t), and updates the cache entries of
undrafted clients.
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Algorithm 2: Semi-Asynchronous Federated Averag-
ing (SAFA) protocol

Input : maximum number of rounds r, client set M ,
local mini-batch size B, number of local
epochs E, learning rate η, lag tolerance τ

Output: finalized global model
Server process: // running on the central server
Initializes client connections
Initializes global model w(0) and the cache
for round t = 1 to r do

Distributes w(t− 1) according to Eq. (3) given τ
for each client k in M in parallel do

w′k(t) = client update(k,wk(t))
end
Collects and selects client updates using CFCFM
Updates cache according to Eq. (6)
Performs aggregation and get w(t) using Eq. (7)
Updates cache according to Eq. (8)

end
return w(r)
Client process: // running on the client k
client update(k,wk):
Bk ← batches from Dk of size B
for epoch e = 1 to E do

for batch b in Bk do
wk = wk − η∇f(wk; b)

end
end
w′k = wk
return w′k to the server

D. Analysis of Lag tolerance

We analyze the impact of lag tolerance from different
perspectives. As mentioned, this hyper-parameter is crucial to
the pace-steering of the SAFA protocol. When lag tolerance is
small, clients/models become deprecated frequently, resulting
in relatively high cost in model distribution. If it is set to a
big value, the server will be very tolerant to the stragglers,
which will probably cause high variance in the versions of
local models and consequently slow down the convergence
of the global model. Thus, we introduce two holistic metrics:
Synchronization Ratio (SR) and Version Variance (VV). SR
measures the usage of downlink by which the global model is
distributed to the edge of network. V V is defined based on the
version distribution of local updates. For SAFA, we formulate
SR and VV as follows:

SRSAFA =
1

rm

r∑
t=1

(|
⋃

v=t−1
Mv(t)|+ |

⋃
v<t−τ

Mv(t)|) (9)

where r is the number of global rounds and m is the number of
clients. SR is calculated based on our lag-tolerant distribution
rule (Eq. 3).

V VSAFA =
1

r

r∑
t=1

var(Vt) (10)

where Vt is the version distribution of trained clients at round
t, i.e., Vt = {v1, v2, ..., vm}.

We change lag tolerance (i.e., τ ) from 1 to 10 and set
up several groups of FL tests running a regression task on
the Boston Housing dataset. We set the maximum number of
global rounds to 100. Apart from the best loss achieved (i.e.,
the minimum loss by the global model in 100 rounds), we also
present the statistical results in the metrics including EUR,
SR and V V .

Fig. 3(a) draws the best loss of the global model in the
FL environment where we set the selection fraction C to 0.1,
0.5 and 1.0, and set the expectation of client crash probability
cr to 0.3 and 0.7, respectively. Fig. 3(b) shows the resulting
synchronization ratio (SR). Apparently small values of lag
tolerance show a clear advantage in terms of loss. However,
the overhead of communication (revealed by SR) is relatively
large in the case where τ is set too small (e.g., 1, 2 or 3).
This is expected because more clients will become deprecated
and be forced to synchronize when we are less tolerant to the
stragglers and stale models.
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Fig. 3. (a) Best loss achieved by the global model and (b) the synchronization
ratio over the federated optimization with SAFA protocol under different lag
tolerance settings.
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Fig. 4. (a) Effective Update Ratio (EUR) and (b) Version Variance (VV) over
the federated optimization with SAFA protocol under different lag tolerance
settings.

There are multiple factors that can affect the best global
model we can obtain in federated learning. We analyze it by
observing the effective update ratio (EUR) and the variance of
version (V V ) under different FL settings – we argue that they
are two important metrics that well reflect the quality of the
aggregation step, which is vital for the accuracy of the global
model. From Fig. 4(a) we can see EUR basically remains
level as the lag tolerance changes, and that EUR depends
on both the client fraction C and the client crash probability
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cr. When cr is low (e.g., cr = 0.3), EUR is slightly above
the percentage quota of the clients specified by C, which is
because of the contribution by undrafted clients. In the case
of a high crash rate (e.g., cr = 0.7), EUR is restricted at a
low level as it is impossible to be higher than E(|M −K|),
which in theory is equal to 1− cr, i.e., the portion of clients
with successfully committed updates. In addition, the plot of
Version Variance in Fig. 4(b) reveals part of the reason why
the quality of the global model degrades when lag tolerance
is set too large (see Fig. 3(a)). In general V V increases if
we make SAFA more tolerant to the stragglers (i.e., a larger
value of τ ). It can be further observed from Fig. 4(b) that as
τ increases, V V goes up at a much slower rate in relatively
stable FL settings (e.g., cr = 0.3) than in the extreme settings
(e.g., cr = 0.7). Combining Fig. 3(a) and Fig. 4(b), we can
see a clear correlation between V V and the quality of global
model especially in an unstable environment where the clients
disengage frequently.

Based on the observations, we find that a moderate lag
tolerance can largely restrain the loss of global model below a
desired level and avoid the high communication cost (indicated
by SR) in sending out the global model. Therefore we suggest
setting lag tolerance to 5 rounds in general.

E. Bias Analysis

In this section, we theoretically analyze the bias in client
selection introduced by the discrepancy of performance and
reliability between clients. Here the bias between two clients
(e.g., clients A and B) refers to the ratio of client A’s chance
of contributing to the global model to client B’s chance. It is
worth mentioning that FedAvg also incurs bias (even though
it uses random selection before the training starts) because the
clients drop or opt out with different frequencies.

In the analysis, we consider an extreme case which repre-
sents the worst bias between the clients. In this case, clients
A and B are assumed to the most and least powerful clients,
respectively. Namely, clients A and B yield the shortest and
longest local training time, respectively. Further, we assume
they have the probabilities of dropping out in any round of
training, which are denoted by crA and crB . For the entire
set of clients, we assume an overall crash ratio, denoted by R,
which is the expected proportion of clients that drop out in a
FL round. After r rounds of training, the bias between clients
A and B can be represented by:

bias(r) =
P (r)(A)

P (r)(B)
(11)

where P (r)(A) (or P (r)(B)) denotes the probability that the
local update of client A (or B) is successfully aggregated in
the global aggregation step in round r.

We first analyze the bias generated by FedAvg (see eq. 12),
which selects clients at the beginning of a round and the server
will wait for all these selected clients to submit local updates.
The local update of a selected client will always be aggregated
in this round unless this client crashed. Therefore, the bias in
FedAvg only depends on the clients’ crash rates, which can
be modeled by:

bias
(r)
FedAvg =

1− crA
1− crB

(12)

In SAFA, the situation is different. C percentage of the
clients are selected from all clients that committed their local
updates at the end of this round. The bias in SAFA not only
depends on the crash rate, but also on the performance of
the clients. A more powerful client can complete their local
training faster and therefore its local update has a higher
chance to be used in a round. For example, when C percentage
of the clients submit their local updates, the server will be able
to finish its client selection stage and consequently the clients
who fail to finish/submit before that will miss that round.

There are two possible cases where a local update can be
used in the current round: i) When a client is selected by the
server, its local update will be directly applied in the current
round. We denote the probability of this case by P (r)

D (A). ii)
The local update generated by an undrafted client in last round
also has the chance to be used in the current round through
the bypass scheme. The probability that this case occurs is
denoted by P (r)

S (A). Therefore, P (r)(A) can be calculated by
summing up P

(r)
D (A) and P

(r)
S (A). P (r)(B) is decomposed

similarly.
Due to the space limitation, we only present the final

expressions of P (r)(A) and P (r)(B) below in this section.
The detailed derivation steps can be found in Appendix A.

First, we need to consider three cases of client selection in
SAFA given selection fraction C and crash ratio R:

case 1 ⇐⇒ C ≥ 1−R
case 2 ⇐⇒ (1− C)(1−R) ≤ C < 1−R
case 3 ⇐⇒ C < (1− C)(1−R).

Literally, case 1 represents a deficit in client selection (i.e.,
too many crashes to fulfill the pick percentage C). Case 3
means that we can meet the selection ratio C by only selecting
the arrived updates from clients not selected last round since
they are prioritized by SAFA. Case 2 stands between cases 1
and 3. Namely, we meet the selection ratio C by selecting the
prioritized (i.e., last-round undrafted or crashed) clients first
and then other clients who also committed their local updates
in this round. Considering these cases we have the following
proposition:

Proposition 1: The probabilities P (r)(A) and P (r)(B) can
be formulated respectively by Eqs. (13) and (14) given r > 1:

P (r)(A) =


1− crA if case 1,
1− crA if case 2,
σ
(r−1)
A − cr2A otherwise

(13)

P (r)(B) =


1− crB if case 1,
σ
(r−1)
B − cr2B if case 2,

1− crB otherwise
(14)

where σ(k)
A = 1−P (k)

D (A) and σ(k)
B = 1−P (k)

D (B). The proof
of the proposition is detailed in Appendix A. Combining the
expressions of P (r)

D (A) and P (r)
D (B) (see Eqs. (22) and (24)

in Appendix A) with proper reduction, we can derive σ(k)
A and

σ
(k)
B :
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{
σ
(k)
A = 2crA−(crA−1)k+1−3

crA−2

σ
(k)
B = 2crB−(crB−1)k+1−3

crB−2

(15)

Therefore, combining Eqs. (13), (14) and the definition of
bias, we can derive the bias introduced by SAFA in round r
(r > 1) as follows:

bias
(r)
SAFA =


1−crA
1−crB if case 1,

1−crA
σ
(r−1)
B −cr2B

if case 2,

σ
(r−1)
A −cr2A
1−crB otherwise

(16)

Fig. 5 visualizes the bias of FedAvg and SAFA as a function
of round index r. In case 1 where all local updates committed
by the clients are aggregated, we have a fixed bias of 1−crA

1−crB ,
which is the same as FedAvg. In case 2, client B, as the
slowest one, will be picked (once it has committed) by the
server as long as it was undrafted or crashed in the previous
round, which effectively reduces the bias to a level below
that of FedAvg. As for case 3, the quota (decided by C)
will be fulfilled only with last-round undrafted or crashed
clients. Assuming both A and B missed last round, client
B is disadvantageous because the server is likely to end the
round before B finishes training when the fraction C has been
fulfilled by other faster clients (including client A). In all these
cases, the bias between A and B converges after a few rounds
once FL starts.
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Fig. 5. The bias incurred by FedAvg and SAFA (in the circumstances of three
different cases) as a function of federated round index. Here both clients A
and B have the same crash rate of 0.3, and the results are similar when setting
different crA and crB according to our experiments.

IV. EXPERIMENTAL EVALUATION

A. Experiment Setup

We conducted extensive experiments to evaluate the ef-
fectiveness of the SAFA protocol on three typical machine
learning tasks. Task 1 is to fit a regression model on the
public Boston Housing dataset1, which is available in public
repositories. Task 2 is to learn a handwritten digit image
classification model implemented using a convolutional neural
network (CNN), which is comprised of two 5x5 convolution
layers (the first one with 20 channels and the second with 50
channels) with 2x2 max pooling, a fully-connected layer with

1https://www.cs.toronto.edu/∼delve/data/boston/bostonDetail.html

ReLu as the activation function, and a final softmax output
layer. This light-weight CNN is suitable for end devices with
small memory size and also adopted in the experiment by [3].
Task 3 is to learn a classification model for detecting network
intrusion given the TCP dump data. For this task we extract
the TCP-connection examples from the KDD Cup’99 dataset2

and use Support Vector Machine (SVM) as the classification
model.

We set up separate environments for these three learning
tasks to investigate the performance of our protocol in different
FL settings. To simulate the unreliability of clients, we set a
crash probability (cr) in each run of test and assume each
client has the equal chance cr to drop out in any round of
federated training. For a given task, we use identical local
training settings (e.g., mini-batch size) for all the clients and
use identical global settings (e.g., the maximum number of
rounds and round time limit) for each protocol. The details of
the experiment setup is shown in Table II.

TABLE II
EXPERIMENTAL SETUP FOR FEDERATED LEARNING

parameter symbol Task 1 Task 2 Task 3
dataset D Boston MNIST KDDCup99
# of features d 13 28x28 35
model w Regression CNN SVM
dataset size n 506 70k 186k
# of clients m 5 100 500
max # of rounds R 100 50 100
# of local epochs E 3 5 5
mini-batch size B 5 40 100
learning rate lr 1e-4 1e-3 1e-2

To simulate data imbalance and the heterogeneity in end
devices, we assume the size of data partitions (i.e., local data
size) follows the Gaussian distribution N (µ, 0.3µ) where µ =
n/m, and assume clients’ performance follows the exponential
distribution with λ = 1.0. Here we define the performance of
a client as the number of batches it can process per second
in training. End devices (i.e., clients) may be unreliable and
crash occasionally by a probability of ρk. In the experiment we
assume clients crash independently with the same probability
in any federated round and set ρk to be cr, i.e. ρk = cr, k =
1, 2, ...,m.

For comparison, we also implemented FedAvg [3], FedCS
and a fully local training process as the baselines. FedCS [20]
is a refined FL protocol that has to estimate the speed that
clients work and filters out some slow clients proactively (at
the stage of client selection) to improve the overall efficiency
of FL. The fully local protocol never performs the global
aggregation until the end of the final round.

B. Results

In this section we present the results of our experiments and
discuss the evaluated FL protocols in terms of the quality of
the obtained global model (shown in Figs. 6, 7 and 8, with
more details in Tables X, XII and XIV) as well as holistic
metrics including round efficiency (summarized in Tables IV,

2https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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VI and VIII), communication overheads (in Tables V, VII and
IX) and local resource utilization (Tables XI, XIII and XV).

A main objective of our work is to boost the round efficiency
(i.e., reducing the average length of a federated round), the
convergence rate and the resulting accuracy (of the global
model). In our experiments, we measure the length of a
federated round by considering both local training time and
communication overheads, which is captured by Eq. (17).

T = min
{
Tlim, Tdist+max

k
{T downk +Tupk +T traink }

}
(17)

where Tlim is the preset upper limit of round length. T traink ,
T downk and Tupk denote local training time, model download
and upload time for client k, respectively. T downk and Tupk
depend on model size and device bandwidth. Using a local
network setting similar to that in [20], we assign a stable
bandwidth of 1.40Mbps to each client. For client k, its local
training time (i.e., T traink ) is determined using Eq. (18):

T traink =
|Bk| · E
sk

(18)

where E is the number of local epochs and |Bk| is the
number of batches on device k (|Bk| depends on the size
of its local data partition and the preset batch size). In the
experiment, a client’s performance is defined as the number of
batches the client is able to process per second. sk denotes the
performance of client k. We assume that clients’ performance
follows the exponential distribution with λ = 1.0.

For a federated round, Tdist denotes the server-side over-
head for distributing the global model to the end devices.
In this paper we assume the server can fully utilize its
bandwidth to send models in parallel via intermediate network
elements [19] to the clients. Thus Tdist depends on the number
of model copies to distribute (denoted by msync) and the
communication bandwidth of the server (denoted by bw). Tdist
is formulated in Eq. (19). Given a FL protocol, Tdist of a round
is closely correlated to its Synchronization Ratio. The increase
in SR indicates a higher average communication cost at the
stage of model distribution.

Tdist =
msync ·model size

bw
(19)

where the server bandwidth bw is set to 10Gbps in our exper-
iment considering the prevailing 10-Gigabit Ethernet connec-
tion. Models are usually compressed before transmission. We
use 10MB as the model size following the result presented in
[26].

For different machine learning models, we define their
accuracy in different ways, as shown in Table III. In the
table, y and ŷ denote the label and the output of the model,
respectively. The function φ(·) returns 1 if ŷ matches y,
otherwise it returns 0.
Task 1: Regression

In this task, we aim to learn a regression model on a small
group of clients to predict the median value of a house in
the area of Boston Mass. Input features include 13 properties
about the estate such as average number of rooms per dwelling

TABLE III
FORMULATING ACCURACY OF THE GLOBAL MODEL FOR THE THREE

TASKS

ML task accuracy formulation
Task 1: regression acc = 1− 1

n

∑n
i=1

|yi−ŷi|
max(yi,ŷi)

Task 2: CNN acc = 1
n

∑n
i=1 φ(yi, ŷi)

Task 3: SVM acc = 1
n

∑n
i=1 max(0, sign(yi · ŷi))

and crime rate. In this experiment, we ran FL with every
candidate protocol (i.e., SAFA, FedAvg, FedCS and fully
local training) and compare their effectiveness in terms of the
achieved accuracy of the global model, round efficiency and
communication overhead.
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Fig. 6. The loss trace of the global model as the FL process progresses on
Task 1 where the client fraction is set to 0.3 and the crash probability is set
to 0.1, 0.3 ,0.5 and 0.7 for the four sub-figures (a)-(d), respectively

TABLE IV
AVERAGE LENGTH OF A FEDERATED ROUND IN SECS ON TASK 1 WHEREIN

EACH PROTOCOL WAS TESTED WITH VARYING SELECTION FRACTION
UNDER DIFFERENT ENVIRONMENT SETTINGS. ROUND TIME LIMIT IS SET

TO 830S CONSIDERING THE CLIENT PERFORMANCE AND DATA
DISTRIBUTION.

Avg. round length (Task 1: regression)
FedAvg

cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 316.22 489.37 586.90 731.12 808.59
0.3 429.63 652.39 641.40 736.53 832.02
0.5 372.43 495.37 475.14 621.91 676.41
0.7 354.34 405.86 593.10 728.25 661.67

FedCS
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 207.50 487.47 564.20 656.49 786.96
0.3 336.97 519.58 651.23 401.95 832.02
0.5 186.51 221.46 467.98 621.91 676.41
0.7 195.09 398.81 584.68 393.09 661.67

SAFA
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 149.69 389.44 540.41 606.48 734.40
0.3 202.44 430.68 583.22 371.77 699.23
0.5 169.33 215.66 408.85 510.85 508.23
0.7 161.81 293.09 402.18 411.06 379.29

It can be seen from Fig. 6 and Table X (in Appendix
B) that SAFA significantly improves the convergence rate as
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well as the best accuracy achieved by the global regression
model, especially under settings of unstable environments (i.e.,
cr ≥ 0.5). This is mainly attributed to our staleness-tolerant
mechanism. Another advantage of the tolerance to stragglers
is the preservation of local training results. We use the metric
Futility Percentage to measure the percentage of local progress
that is wasted due to the model synchronization forced by
the server (FedAvg and FedCS force the selected clients to
overwrite its local model with the latest global model). Results
of SR and futility percentage in Table XI show that the wasted
training progress is reduced by SAFA effectively.

TABLE V
AVERAGE MODEL DISTRIBUTION OVERHEAD (UNIT: SECONDS) ON TASK 1

Avg. Tdist (Task 1: regression)
FedAvg

cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.40 0.81 1.21 1.62 2.02
0.3 0.40 0.81 1.21 1.62 2.02
0.5 0.40 0.81 1.21 1.62 2.02
0.7 0.40 0.81 1.21 1.62 2.02

FedCS
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.33 0.81 1.21 1.62 2.02
0.3 0.40 0.81 1.21 1.31 2.02
0.5 0.33 0.64 1.21 1.62 2.02
0.7 0.33 0.81 1.21 1.29 2.02

SAFA
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 1.84 1.83 1.80 1.84 1.81
0.3 1.49 1.46 1.43 1.40 1.41
0.5 1.00 1.07 0.96 1.05 1.02
0.7 0.76 0.69 0.77 0.75 0.74

As shown in Tables IV and V, there is not much difference
in average round length and model distribution overhead due
to the very limited number of devices used to run task 1.
But we still observed notable efficiency boost and convergence
speedup by SAFA under the circumstance where the selection
fraction C is very small. With C set to 0.1, SAFA halves the
time required to finish a federated round compared to FedAvg.

Task 2: CNN
We divided the MNIST dataset into m partitions of which

the sizes are random variables (following Gaussian distribu-
tion). The CNN models with randomly initialized weights are
created on 100 clients and we again tested Fully local, FedAvg,
FedCS and SAFA under a variety of FL settings.

As a result, the Fully Local protocol can finish with an
accuracy around 90% on this classification task with the CNN
model, while FedAvg, FedCS and SAFA raise that to 96.0% ∼
98.0% (Table XII in Appendix B). SAFA shows a significant
advantage in round efficiency (see Table VI) - it is able to
achieve up to 27× and 6× speed-up compared to FedAvg and
FedCS in an unreliable environment where clients frequently
opt/drop out and only a small fraction (i.e., C = 0.1 or 0.3)
of them are allowed to participate in a round.

The average Tdist for SAFA mainly depends on client crash
probability (see Table VII), and it remains at a low level with
cr ≥ 0.5. In the case where devices are more reliable in local
training (i.e., cr < 0.5), SAFA embraces a greater number of
updates and results in a slightly higher cost (of tens of seconds)

TABLE VI
AVERAGE LENGTH OF A FEDERATED ROUND IN SECS ON TASK 2 WHEREIN

EACH PROTOCOL WAS TESTED WITH VARYING SELECTION FRACTION
UNDER DIFFERENT ENVIRONMENT SETTINGS. ROUND TIME LIMIT IS SET

TO 5600S CONSIDERING THE CLIENT PERFORMANCE AND DATA
DISTRIBUTION.

Avg. round length (Task 2: CNN)
FedAvg

cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 3402.55 5557.25 5610.20 5614.28 5620.40
0.3 5410.97 5606.12 5610.20 5614.28 5620.40
0.5 5602.04 5606.12 5610.20 5614.28 5620.40
0.7 5602.04 5606.12 5610.20 5614.28 5620.40

FedCS
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 1487.96 2133.02 3668.70 1871.65 1982.91
0.3 1261.59 1542.61 3132.86 2349.46 5395.54
0.5 1273.37 1642.59 3025.75 2876.63 3162.02
0.7 1253.74 1969.28 2180.46 4344.88 2530.01

SAFA
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 198.28 315.33 3703.81 1708.93 1947.90
0.3 206.88 368.01 2691.25 1899.23 2149.23
0.5 203.48 800.64 2573.60 2727.25 2186.67
0.7 241.86 1893.14 1877.30 2619.79 2340.80
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Fig. 7. The loss trace of the global model as the FL process progresses on
Task 2 where the client fraction is set to 0.3 and the crash probability is set
to 0.1, 0.3 ,0.5 and 0.7 for the four sub-figures (a)-(d), respectively.

during the stage of model distribution, but the overhead is still
acceptable considering the overall length of a federated round
(which could last thousands of seconds, see Table VI).

Task 3: SVM
For this task we use a relatively large data set containing

186,480 TCP dump records including several types of network
intrusions. The target is to learn a global SVM model to
recognize malicious connections and normal connections. We
dispersed the dataset onto 500 clients to perform FL with
SAFA and other existing training protocols.

Table XIV (in Appendix B) shows that FedAvg, FedCS
and SAFA can produce very accurate global models (with the
classification accuracy of over 99%) after convergence. SAFA
could incur higher overhead in model distribution (as the SR
is larger for SAFA, see Tables IX and XV in some cases).
Nevertheless, SAFA still significantly outperforms FedAvg and
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TABLE VII
AVERAGE MODEL DISTRIBUTION OVERHEAD (UNIT: SECONDS) ON TASK 2

Avg. Tdist (Task 2: CNN)
FedAvg

cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 2.04 6.12 10.20 14.28 20.40
0.3 2.04 6.12 10.20 14.28 20.40
0.5 2.04 6.12 10.20 14.28 20.40
0.7 2.04 6.12 10.20 14.28 20.40

FedCS
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 2.04 6.12 10.20 14.14 20.40
0.3 2.02 6.05 10.20 14.13 20.40
0.5 2.04 6.06 10.20 14.28 20.20
0.7 2.04 6.12 10.11 14.28 20.20

SAFA
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 18.27 18.45 18.26 18.47 18.38
0.3 14.45 14.65 14.48 14.54 14.69
0.5 10.89 10.51 10.70 10.84 10.58
0.7 7.17 7.23 7.55 7.21 7.41

TABLE VIII
AVERAGE LENGTH OF A FEDERATED ROUND IN SECS ON TASK 3 WHEREIN

EACH PROTOCOL WAS TESTED WITH VARYING SELECTION FRACTION
UNDER DIFFERENT ENVIRONMENT SETTINGS. ROUND TIME LIMIT IS SET

TO 1620S CONSIDERING THE CLIENT PERFORMANCE AND DATA
DISTRIBUTION.

Avg. round length (Task 3: SVM)
FedAvg

cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 1640.20 1680.60 1721.00 1761.40 1822.00
0.3 1640.20 1680.60 1721.00 1761.40 1822.00
0.5 1640.20 1680.60 1721.00 1761.40 1822.00
0.7 1640.20 1680.60 1721.00 1761.40 1822.00

FedCS
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 788.75 1319.17 1607.42 1539.14 1802.09
0.3 685.26 1216.12 1521.82 1617.97 1775.50
0.5 714.73 1229.87 1371.03 1605.23 1821.60
0.7 754.52 1190.44 1526.23 1573.42 1731.65

SAFA
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 310.70 353.98 1419.29 1514.38 1802.15
0.3 274.03 330.32 1499.79 1559.50 1762.51
0.5 242.93 398.27 1317.91 1476.14 1724.52
0.7 212.52 1187.96 1313.99 1223.72 1690.61

FedCS by 7.7× and 3.7×, respectively, in average round
length (see Table VIII). Its advantage decreases as more
clients are set to engage in training but it is still the most
efficient protocol. In contrast to FedAvg and FedCS, SAFA
capitalizes the contribution from straggling clients effectively,
leading to a very small futility percentage (below 4%, see
Table XV in Appendix B) on this task, which means that the
majority of local training progresses make contribution to the
convergence of the final global model, even in a very unreliable
environment.

C. Discussion

The experimental results with several tasks including re-
gression and classification demonstrate the effectiveness of ap-
plying our semi-asynchronous protocol to FL with unreliable
clients. The improvement achieved by SAFA lies in three-fold:
i) faster convergence of the global model and a higher accuracy
achieved, ii) significant reduction in average round length, and
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Fig. 8. The loss trace of the global model as the FL process progresses on
Task 3, where the client fraction is set to 0.3 and the crash probability is set
to 0.1, 0.3 ,0.5 and 0.7 for the four sub-figures (a)-(d) respectively

TABLE IX
AVERAGE MODEL DISTRIBUTION OVERHEAD (IN SECONDS) ON TASK 3

Avg. Tdist (Task 3: SVM)
FedAvg

cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 20.20 60.60 101.00 141.40 202.00
0.3 20.20 60.60 101.00 141.40 202.00
0.5 20.20 60.60 101.00 141.40 202.00
0.7 20.20 60.60 101.00 141.40 202.00

FedCS
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 20.20 60.48 100.78 140.79 201.60
0.3 20.11 60.60 100.81 141.09 201.60
0.5 20.13 60.60 100.85 140.84 201.60
0.7 20.20 60.60 100.61 141.14 201.19

SAFA
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 181.95 182.32 181.49 181.84 182.15
0.3 142.89 141.91 141.95 142.50 142.81
0.5 104.38 104.56 105.34 104.59 104.52
0.7 70.62 70.63 70.55 70.05 70.61

iii) increased utilization of local training progress made by the
stragglers. A few interesting phenomena were also observed
in our experiments. First and foremost, we find that increasing
the client fraction C does not always improve the quality of
the global model. For example, a reasonably high accuracy is
obtained by setting C to 0.3 or 0.5 (instead of 1.0) in task
2 in the case of a low crash probability. This in some ways
infers that involving more clients each round is not always
beneficial (or has very limited benefit). In addition, we notice
that fully local training without round-wise aggregation is in
some cases able to produce a reasonably good model, e.g., in
the cases of Task 1 with C = 0.3 and Task 3 with C = 0.1
and cr = 0.7. Also, we find that the synchronous FL protocol
FedAvg can produce a global model slightly better than our
solution in the case of C = 1.0, i.e., trying to involve all
clients in every round. This advantage is probably brought by
the feature that pure synchronization can avoid the negative
effect from stale models, which amplifies as a larger fraction
of clients get involved. However, it is practically unrealistic to
set a big C for FL because communication could be expensive
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while the enhancement of the resulting accuracy is very limited
(see Tables X, XII and XIV in Appendix B).

V. CONCLUSION

Aiming at improving the efficiency of federated learning
with unreliable end devices, we propose a semi-asynchronous
protocol which incorporates a novel client selection algorithm
decoupling the central server and the selected clients for a
reduction of average round time as well as a lag-tolerant
mechanism in model distribution for tackling the tradeoff be-
tween faster convergence and lower communication overhead.
We also analyze the upper bound of the bias introduced by
using SAFA in FL. The results of experimental evaluation on
three typical machine learning tasks show that our protocol
effectively enhances the round efficiency of federated opti-
mization process, improves the quality of the global model
and reduces local resource wastage at a relatively low cost of
communication.

Considering the subtle correlation between local models and
the global model, we plan to look into the balance between
generating the best local models for end devices and obtaining
an optimal global model in the central server. As another
part of future work, we are also going to investigate how to
further improve federated learning using model parallelism and
compression.
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APPENDIX A
DEDUCTION OF P (r)(A) AND P (r)(B)

Proposition 2: Both P (r)(A) and P (r)(B) can be decom-
posed as the summation of two probabilities:

P (r)(A) = P
(r)
D (A) + P

(r)
S (A) (20)

P (r)(B) = P
(r)
D (B) + P

(r)
S (B) (21)

where P (r)
D (A) denotes the probability by which the update

from client A goes directly into the cache, and P
(r)
S (A) that

client A’s model in the bypass structure goes into the cache in
round r. P (r)

D (B) and P
(r)
S (B) are defined in a similar way.

For the three cases considered, for client A we have:

P
(r)
D (A) =


1− crA if case 1,
1− crA if case 2,
(1− crA)(1− P (r−1)

D (A)) otherwise
(22)

P
(r)
S (A) =


0 if case 1,
0 if case 2,
crA(1− P (r−1)

D (A)− crA) otherwise
(23)

The first two cases in Eqs. (22) and 23 indicate that client
A, once finishing local training without crash, can always
submit its update into the cache (for the upcoming aggre-
gation). For case 3 (where C < (1 − R − C)(1 − R) ),
the chance for client A to be directly merged into cache
equals to (1− crA)σ(r−1)

A because two conditions need to be
satisfied: being undrafted/crashed last round and being picked
this round. The situation that client A’s entry in the bypass
takes effect in round r (i.e., P (r)

S (A) in case 3) only happens
when the server ignores client A in both round r − 1 and r
while A actually completed local training at round r − 1.

For client B we have:

P
(r)
D (B) =


1− crB if case 1,
(1− crB)(1− P (r−1)

D (B)) if case 2,
0 otherwise

(24)

P
(r)
S (B) =


0 if case 1,
crB(1− P (r−1)

D (B)− crB) if case 2,
1− crB otherwise

(25)

The analysis for B is a bit more intuitive. In case 1(i.e.,
C ≥ 1−R), client B cannot have any bypass entry available
because it’s update will always be merged into cache, and in
case 2 client B ’s entry in bypass takes effect only when it
crash this round and was undrafted last round. In case 3, client
B never gets picked (thus no direct update to cache) because
too many undrafted clients are expected in each round, leaving
no chance for B as it is the slowest in local training. But client
still has a chance to contribute via the bypass, this happens in
case it got training results in the previous round.

Considering the recurrence relation of P (r)
D (A) and P (r)

D (B)
in Eqs. (22) and (24) in case 3 and 2 respectively, by resolving
it we can derive the following expressions in terms of r:

P
(r)
D (A) =

(crA − 1)n+1 + 1− crA
crA − 2

, for case 3 (26)

P
(r)
D (B) =

(crB − 1)n+1 + 1− crB
crB − 2

, for case 2 (27)

Further, by defining σ
(k)
A = 1 − P (k)

D (A) and σ
(k)
B = 1 −

P
(k)
D (B), we can reformulate P (r)

D (A), P (r)
S (A), P (r)

D (B) and
P

(r)
S (B) as:

P
(r)
D (A) =


1− crA if case 1,
1− crA if case 2,
(1− crA)σ(r−1)

A otherwise
(28)

P
(r)
S (A) =


0 if case 1,
0 if case 2,
crA(σ

(r−1)
A − crA) otherwise

(29)

P
(r)
D (B) =


1− crB if case 1,
(1− crB)σ(r−1)

B if case 2,
0 otherwise

(30)

P
(r)
S (B) =


0 if case 1,
crB(σ

(r−1)
B − crB) if case 2,

1− crB otherwise
(31)

Combining all these results we can derive Eq. (13) and Eq.
(14) in section III-E.
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APPENDIX B
SUPPLEMENTARY RESULTS OF EXPERIMENT

TABLE X
BEST ACCURACY OF THE GLOBAL MODEL ON TASK 1

Best accuracy (Task 1: regression)
Fully local

cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.6154 0.6308 0.5820 0.5423 0.5270
0.3 0.5806 0.6363 0.6145 0.5843 0.5443
0.5 0.5180 0.6043 0.6276 0.6181 0.5978
0.7 0.4443 0.5480 0.6327 0.6409 0.6361

FedAvg
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.6055 0.6413 0.6411 0.6417 0.6424
0.3 0.6117 0.6418 0.6415 0.6419 0.6418
0.5 0.4432 0.6164 0.6421 0.6419 0.6413
0.7 0.3763 0.5576 0.6283 0.6413 0.6418

FedCS
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.6109 0.6415 0.6412 0.6417 0.6423
0.3 0.6077 0.6417 0.6416 0.6420 0.6418
0.5 0.4097 0.6073 0.6423 0.6418 0.6413
0.7 0.2882 0.5999 0.6297 0.6293 0.6418

SAFA
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.6419 0.6414 0.6413 0.6417 0.6423
0.3 0.6426 0.6419 0.6416 0.6417 0.6419
0.5 0.6423 0.6415 0.6422 0.6419 0.6415
0.7 0.6402 0.6422 0.6417 0.6412 0.6420

TABLE XI
SYNCHRONIZATION RATIO AND FUTILITY PERCENTAGE ON TASK 1

SR / futility percentage (Task 1: regression)
FedAvg

cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.100/0.04 0.300/0.03 0.500/0.05 0.700/0.06 1.000/0.06
0.3 0.100/0.09 0.300/0.14 0.500/0.14 0.700/0.17 1.000/0.16
0.5 0.100/0.26 0.300/0.27 0.500/0.27 0.700/0.23 1.000/0.25
0.7 0.100/0.33 0.300/0.36 0.500/0.31 0.700/0.38 1.000/0.35

FedCS
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.080/0.21 0.300/0.07 0.500/0.04 0.700/0.04 1.000/0.06
0.3 0.100/0.17 0.300/0.12 0.500/0.14 0.648/0.32 1.000/0.16
0.5 0.079/0.39 0.234/0.41 0.500/0.28 0.700/0.25 1.000/0.25
0.7 0.078/0.49 0.300/0.33 0.500/0.35 0.644/0.51 1.000/0.35

SAFA
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.910/0.00 0.894/0.00 0.900/0.00 0.906/0.00 0.882/0.00
0.3 0.722/0.00 0.714/0.00 0.716/0.01 0.678/0.00 0.700/0.00
0.5 0.498/0.02 0.502/0.01 0.470/0.00 0.536/0.01 0.506/0.01
0.7 0.368/0.04 0.346/0.02 0.362/0.03 0.342/0.04 0.354/0.03

TABLE XII
BEST ACCURACY OF THE GLOBAL MODEL ON TASK 2

best accuracy (Task 2: CNN)
Fully local

cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.8849 0.9066 0.9026 0.9131 0.9019
0.3 0.8909 0.8932 0.8937 0.8909 0.9126
0.5 0.8649 0.8898 0.9021 0.8932 0.9081
0.7 0.8518 0.8956 0.9026 0.8959 0.9093

FedAvg
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.9407 0.9664 0.9738 0.9766 0.9796
0.3 0.9326 0.9640 0.9705 0.9745 0.9755
0.5 0.9178 0.9532 0.9652 0.9696 0.9738
0.7 0.8818 0.9452 0.9534 0.9591 0.9672

FedCS
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.9423 0.9666 0.9732 0.9762 0.9791
0.3 0.9328 0.9626 0.9702 0.9741 0.9765
0.5 0.9232 0.9529 0.9650 0.9699 0.9321
0.7 0.8962 0.9434 0.9546 0.9599 0.9673

SAFA
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.9748 0.9746 0.9764 0.9779 0.9787
0.3 0.9698 0.9696 0.9727 0.9753 0.9781
0.5 0.9658 0.9672 0.9686 0.9697 0.9714
0.7 0.9604 0.9632 0.9652 0.9603 0.9645

TABLE XIII
SYNCHRONIZATION RATIO AND FUTILITY PERCENTAGE ON TASK 2

SR / futility percentage (Task 2: CNN)
FedAvg

cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.100/0.03 0.300/0.04 0.500/0.05 0.700/0.05 1.000/0.05
0.3 0.100/0.16 0.300/0.15 0.500/0.14 0.700/0.15 1.000/0.15
0.5 0.100/0.24 0.300/0.24 0.500/0.25 0.700/0.22 1.000/0.26
0.7 0.100/0.36 0.300/0.36 0.500/0.35 0.700/0.35 1.000/0.35

FedCS
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.092/0.04 0.300/0.05 0.500/0.06 0.693/0.06 1.00/00.05
0.3 0.099/0.16 0.296/0.16 0.500/0.15 0.692/0.15 1.000/0.16
0.5 0.100/0.23 0.297/0.28 0.500/0.25 0.700/0.25 0.990/0.25
0.7 0.100/0.33 0.300/0.33 0.495/0.35 0.700/0.36 0.990/0.36

SAFA
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.896/0.00 0.902/0.00 0.891/0.00 0.900/0.00 0.894/0.00
0.3 0.704/0.00 0.710/0.00 0.704/0.00 0.707/0.00 0.709/0.00
0.5 0.524/0.01 0.517/0.01 0.521/0.01 0.521/0.01 0.509/0.01
0.7 0.341/0.04 0.351/0.04 0.359/0.04 0.342/0.04 0.350/0.04
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TABLE XIV
BEST ACCURACY OF THE GLOBAL MODEL ON TASK 3

best accuracy (Task 3: SVM)
Fully local

cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.7793 0.6603 0.6307 0.6307 0.6307
0.3 0.7477 0.6363 0.6307 0.6307 0.6307
0.5 0.8419 0.6859 0.6339 0.6307 0.6307
0.7 0.9530 0.7886 0.6673 0.6491 0.6442

FedAvg
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.9935 0.9942 0.9962 0.9992 0.9992
0.3 0.9961 0.9961 0.9962 0.9963 0.9992
0.5 0.9961 0.9960 0.9961 0.9962 0.9963
0.7 0.9961 0.9961 0.9961 0.9957 0.9962

FedCS
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.9959 0.9962 0.9961 0.9991 0.9993
0.3 0.9961 0.9961 0.9962 0.9963 0.9992
0.5 0.9961 0.9962 0.9959 0.9962 0.9962
0.7 0.9961 0.9776 0.9960 0.9960 0.9960

SAFA
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.9962 0.9961 0.9962 0.9992 0.9992
0.3 0.9960 0.9961 0.9962 0.9991 0.9991
0.5 0.9959 0.9961 0.9962 0.9961 0.9962
0.7 0.9960 0.9934 0.9961 0.9958 0.9960

TABLE XV
SYNCHRONIZATION RATIO AND FUTILITY PERCENTAGE ON TASK 3

SR / futility percentage (Task 3: SVM)
FedAvg

cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.100/0.05 0.300/0.05 0.500/0.05 0.700/0.05 1.000/0.05
0.3 0.100/0.15 0.300/0.15 0.500/0.15 0.700/0.15 1.000/0.15
0.5 0.100/0.25 0.300/0.25 0.500/0.25 0.700/0.25 1.000/0.25
0.7 0.100/0.35 0.300/0.35 0.500/0.35 0.700/0.35 1.000/0.35

FedCS
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.100/0.05 0.299/0.05 0.499/0.05 0.697/0.05 0.998/0.05
0.3 0.099/0.15 0.300/0.15 0.499/0.15 0.698/0.15 0.998/0.15
0.5 0.099/0.24 0.300/0.25 0.499/0.25 0.697/0.25 0.998/0.25
0.7 0.100/0.36 0.300/0.35 0.498/0.36 0.699/0.36 0.996/0.36

SAFA
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.901/0.00 0.900/0.00 0.900/0.00 0.901/0.00 0.901/0.00
0.3 0.703/0.00 0.700/0.00 0.701/0.00 0.702/0.00 0.703/0.00
0.5 0.512/0.01 0.514/0.01 0.516/0.01 0.513/0.01 0.512/0.01
0.7 0.345/0.04 0.343/0.04 0.344/0.04 0.342/0.04 0.344/0.04


