48 research outputs found

    Induction of HSPA4 and HSPA14 by NBS1 overexpression contributes to NBS1-induced in vitro metastatic and transformation activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nijmegen breakage syndrome (NBS) is a chromosomal-instability syndrome associated with cancer predisposition, radiosensitivity, microcephaly, and growth retardation. The NBS gene product, NBS1 (p95) or nibrin, is a part of the MRN complex, a central player associated with double-strand break (DSB) repair. We previously demonstrated that NBS1 overexpression contributes to transformation through the activation of PI 3-kinase/Akt. NBS1 overexpression also induces epithelial-mesenchymal transition through the Snail/MMP2 pathway.</p> <p>Methods</p> <p>RT-PCR, Western blot analysis, <it>in vitro </it>migration/invasion, soft agar colony formation, and gelatin zymography assays were performed.</p> <p>Results</p> <p>Here we show that heat shock protein family members, A4 and A14, were induced by NBS1 overexpression. siRNA mediated knockdown of HSPA4 or HSPA14 decreased the <it>in vitro </it>migration, invasion, and transformation activity in H1299 cells overexpressing NBS1. However, HSPA4 or HSPA14 induced activity was not mediated through MMP2. NBS1 overexpression induced the expression of heat shock transcription factor 4b (HSF4b), which correlated with the expression of HSPA4 and HSPA14.</p> <p>Conclusion</p> <p>These results identify a novel pathway (NBS1-HSF4b-HSPA4/HSPA14 axis) to induce migration, invasion, and transformation, suggesting the activation of multiple signaling events induced by NBS1 overexpression.</p

    Interactions involving the human RNA polymerase II transcription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG, and Cockayne syndrome group B (CSB) protein

    Get PDF
    The human basal transcription factor TFIIH plays a central role in two distinct processes. TFIIH is an obligatory component of the RNA polymerase II (RNAP II) transcription initiation complex. Additionally, it is believed to be the core structure around which some if not all the components of the nucleotide excision repair (NER) machinery assemble to constitute a nucleotide excision repairosome. At least two of the subunits of TFIIH (XPB and XPD proteins) are implicated in the disease xeroderma pigmentosum (XP). We have exploited the availability of the cloned XPB, XPD, p62, p44, and p34 genes (all of which encode polypeptide subunits of TFIIH) to examine interactions between in vitro-translated polypeptides by co-immunoprecipitation. Additionally we have examined interactions between TFIIH components, the human NER protein XPG, and the CSB protein which is implicated in Cockayne syndrome (CS). Our analyses demonstrate that the XPB, XPD, p44, and p62 proteins interact with each other. XPG protein interacts with multiple subunits of TFIIH and with CSB protein

    Evidence that the Nijmegen breakage syndrome protein, an early sensor of double-strand DNA breaks (DSB), is involved in HIV-1 post-integration repair by recruiting the ataxia telangiectasia-mutated kinase in a process similar to, but distinct from, cellular DSB repair

    Get PDF
    Retroviral transduction involves integrase-dependent linkage of viral and host DNA that leaves an intermediate that requires post-integration repair (PIR). We and others proposed that PIR hijacks the host cell double-strand DNA break (DSB) repair pathways. Nevertheless, the geometry of retroviral DNA integration differs considerably from that of DSB repair and so the precise role of host-cell mechanisms in PIR remains unclear. In the current study, we found that the Nijmegen breakage syndrome 1 protein (NBS1), an early sensor of DSBs, associates with HIV-1 DNA, recruits the ataxia telangiectasia-mutated (ATM) kinase, promotes stable retroviral transduction, mediates efficient integration of viral DNA and blocks integrase-dependent apoptosis that can arise from unrepaired viral-host DNA linkages. Moreover, we demonstrate that the ATM kinase, recruited by NBS1, is itself required for efficient retroviral transduction. Surprisingly, recruitment of the ATR kinase, which in the context of DSB requires both NBS1 and ATM, proceeds independently of these two proteins. A model is proposed emphasizing similarities and differences between PIR and DSB repair. Differences between the pathways may eventually allow strategies to block PIR while still allowing DSB repair

    Endothelial Transdifferentiation of Tumor Cells Triggered by the Twist1-Jagged1-KLF4 Axis: Relationship between Cancer Stemness and Angiogenesis

    No full text
    Tumor hypoxia is associated with malignant biological phenotype including enhanced angiogenesis and metastasis. Hypoxia increases the expression of vascular endothelial cell growth factor (VEGF), which directly participates in angiogenesis by recruiting endothelial cells into hypoxic area and stimulating their proliferation, for increasing vascular density. Recent research in tumor biology has focused on the model in which tumor-derived endothelial cells arise from tumor stem-like cells, but the detailed mechanism is not clear. Twist1, an important regulator of epithelial-mesenchymal transition (EMT), has been shown to mediate tumor metastasis and induce tumor angiogenesis. Notch signaling has been demonstrated to be an important player in vascular development and tumor angiogenesis. KLF4 (KrĆ¼ppel-like factor 4) is a factor commonly used for the generation of induced pluripotent stem (iPS) cells. KLF4 also plays an important role in the differentiation of endothelial cells. Although Twist1 is known as a master regulator of mesoderm development, it is unknown whether Twist1 could be involved in endothelial transdifferentiation of tumor-derived cells. This review focuses on the role of Twist1-Jagged1/Notch-KLF4 axis on tumor-derived endothelial transdifferentiation, tumorigenesis, metastasis, and cancer stemness

    Hypoxia-regulated target genes implicated in tumor metastasis

    Get PDF
    <p>Abstract</p> <p>Hypoxia is an important microenvironmental factor that induces cancer metastasis. Hypoxia/hypoxia-inducible factor-1Ī± (HIF-1Ī±) regulates many important steps of the metastatic processes, especially epithelial-mesenchymal transition (EMT) that is one of the crucial mechanisms to cause early stage of tumor metastasis. To have a better understanding of the mechanism of hypoxia-regulated metastasis, various hypoxia/HIF-1Ī±-regulated target genes are categorized into different classes including transcription factors, histone modifiers, enzymes, receptors, kinases, small GTPases, transporters, adhesion molecules, surface molecules, membrane proteins, and microRNAs. Different roles of these target genes are described with regards to their relationship to hypoxia-induced metastasis. We hope that this review will provide a framework for further exploration of hypoxia/HIF-1Ī±-regulated target genes and a comprehensive view of the metastatic picture induced by hypoxia.</p

    Extrachromosomal Telomeric Circles Contribute to Rad52-, Rad50-, and Polymerase -Mediated Telomere-Telomere Recombination in Saccharomyces Cerevisiae

    No full text
    Telomere maintenance is required for chromosome stability, and telomeres are typically replicated by the telomerase reverse transcriptase. In both tumor and yeast cells that lack telomerase, telomeres are maintained by an alternative recombination mechanism. By using an in vivo inducible Cre- loxP system to generate and trace the fate of marked telomeric DNA- containing rings, the efficiency of telomere- telomere recombination can be determined quantitatively. We show that the telomeric loci are the primary sites at which a marked telomeric ring-containing DNA is observed among wild-type and surviving cells lacking telomerase. Marked telomeric DNAs can be transferred to telomeres and form tandem arrays through Rad52- , Rad50-, and polymerase - mediated recombination. Moreover, increases of extrachromosomal telomeric and Y' rings were observed in telomerase- deficient cells. These results imply that telomeres can use looped-out telomeric rings to promote telomere-telomere recombination in telomerase- deficient Saccharomyces cerevisiae

    Hypoxia, Epithelial-Mesenchymal Transition, and TET-Mediated Epigenetic Changes

    No full text
    Tumor hypoxia is a pathophysiologic outcome of disrupted microcirculation with inadequate supply of oxygen, leading to enhanced proliferation, epithelial-mesenchymal transition (EMT), metastasis, and chemo-resistance. Epigenetic changes induced by hypoxia are well documented, and they lead to tumor progression. Recent advances show that DNA demethylation mediated by the Ten-eleven translocation (TET) proteins induces major epigenetic changes and controls key steps of cancer development. TET enzymes serve as 5mC (5-methylcytosine)-specific dioxygenases and cause DNA demethylation. Hypoxia activates the expression of TET1, which also serves as a co-activator of HIF-1Ī± transcriptional regulation to modulate HIF-1Ī± downstream target genes and promote epithelial-mesenchymal transition. As HIF is a negative prognostic factor for tumor progression, hypoxia-activated prodrugs (HAPs) may provide a favorable therapeutic approach to lessen hypoxia-induced malignancy

    Hypoxia, Epithelial-Mesenchymal Transition, and TET-Mediated Epigenetic Changes

    No full text
    Tumor hypoxia is a pathophysiologic outcome of disrupted microcirculation with inadequate supply of oxygen, leading to enhanced proliferation, epithelial-mesenchymal transition (EMT), metastasis, and chemo-resistance. Epigenetic changes induced by hypoxia are well documented, and they lead to tumor progression. Recent advances show that DNA demethylation mediated by the Ten-eleven translocation (TET) proteins induces major epigenetic changes and controls key steps of cancer development. TET enzymes serve as 5mC (5-methylcytosine)-specific dioxygenases and cause DNA demethylation. Hypoxia activates the expression of TET1, which also serves as a co-activator of HIF-1Ī± transcriptional regulation to modulate HIF-1Ī± downstream target genes and promote epithelial-mesenchymal transition. As HIF is a negative prognostic factor for tumor progression, hypoxia-activated prodrugs (HAPs) may provide a favorable therapeutic approach to lessen hypoxia-induced malignancy

    A twist tale of cancer metastasis and tumor angiogenesis

    No full text
    Twist1 is an evolutionally conserved transcription factor. Originally identified in Drosophila as a key regulator for mesoderm development, it was later implicated in many human diseases, including Saethre-Chotzen syndrome and cancer. Twist1ā€™s involvement in cancer has been well recognized. Driven by hypoxia-induced factor-1 (HIF-1), Twist1 has been considered as a proto-oncogene and its overexpression has been observed in a wide variety of human cancers. High expression level of Twist1 is closely related to tumor aggressiveness and metastatic potential. In cancer cells, Twist1 has been shown to function as a key regulator of epithelial-mesenchymal transition (EMT), a critical process for metastasis initiation. Twist1 has also been implicated in maintaining cancer stemness for selfrenewal and chemoresistance. This review first summarizes the roles of Twist1 in embryo development and Saethre-Chotzen syndrome followed by a discussion of Twist1ā€™s critical functions in cancer. In particular, the review focuses on the recent discovery of Twist1ā€™s capability to promote endothelial transdifferentiation of cancer cells beyond EMT

    Organ defects of the Usp7K444R mutant mouse strain indicate the essential role of K63-polyubiquitinated Usp7 in organ formation

    No full text
    Background: K63-linked polyubiquitination of proteins have nonproteolytic functions and regulate the activity of many signal transduction pathways. USP7, a HIF1Ī± deubiquitinase, undergoes K63-linked polyubiquitination under hypoxia. K63-polyubiquitinated USP7 serves as a scaffold to anchor HIF1Ī±, CREBBP, the mediator complex, and the super elongation complex to enhance HIF1Ī±-induced gene transcription. However, the physiological role of K63-polyubiquitinated USP7 remains unknown. Methods: Using a Usp7K444R point mutation knock-in mouse strain, we performed immunohistochemistry and standard molecular biological methods to examine the organ defects of liver and kidney in this knock-in mouse strain. Mechanistic studies were performed by using deubiquitination, immunoprecipitation, and quantitative immunoprecipitations (qChIP) assays. Results: We observed multiple organ defects, including decreased liver and muscle weight, decreased tibia/fibula length, liver glycogen storage defect, and polycystic kidneys. The underlying mechanisms include the regulation of protein stability and/or modulation of transcriptional activation of several key factors, leading to decreased protein levels of Prr5l, Hnf4Ī±, CebpĪ±, and Hnf1Ī². Repression of these crucial factors leads to the organ defects described above. Conclusions: K63-polyubiquitinated Usp7 plays an essential role in the development of multiple organs and illustrates the importance of the process of K63-linked polyubiquitination in regulating critical protein functions
    corecore