2,615 research outputs found

    Sensitivity of atmospheric aerosol scavenging to precipitation intensity and frequency in the context of global climate change

    Get PDF
    Wet deposition driven by precipitation is an important sink for atmospheric aerosols and soluble gases. We investigate the sensitivity of atmospheric aerosol lifetimes to precipitation intensity and frequency in the context of global climate change. Our sensitivity model simulations, through some simplified perturbations to precipitation in the GEOS-Chem model, show that the removal efficiency and hence the atmospheric lifetime of aerosols have significantly higher sensitivities to precipitation frequencies than to precipitation intensities, indicating that the same amount of precipitation may lead to different removal efficiencies of atmospheric aerosols. Combining the long-term trends of precipitation patterns for various regions with the sensitivities of atmospheric aerosol lifetimes to various precipitation characteristics allows us to examine the potential impacts of precipitation changes on atmospheric aerosols. Analyses based on an observational dataset show that precipitation frequencies in some regions have decreased in the past 14 years, which might increase the atmospheric aerosol lifetimes in those regions. Similar analyses based on multiple reanalysis meteorological datasets indicate that the changes of precipitation intensity and frequency over the past 30 years can lead to perturbations in the atmospheric aerosol lifetimes by 10% or higher at the regional scale

    The coming of age of EvoMPMI:evolutionary molecular plant-microbe interactions across multiple timescales

    Get PDF
    Plant-microbe interactions are great model systems to study co-evolutionary dynamics across multiple timescales. However, mechanistic research on plant-microbe interactions has often been conducted with little consideration of evolutionary concepts and methods. Conversely, evolutionary research has rarely integrated the range of mechanisms and models from the molecular plant-microbe interactions field. In recent years, the incipient field of evolutionary molecular plant-microbe interactions (EvoMPMI) has emerged to bridge this gap. Here, we report on some of the recent advances in EvoMPMI. In particular, we highlight new systems to study microbe interactions with early diverging land plants, and new findings from studies of adaptive evolution in pathogens and plants. By linking mechanistic and evolutionary research, EvoMPMI promises to expand our understanding of plant-microbe interactions

    Infrared Properties of a Complete Sample of Star-Forming Dwarf Galaxies

    Full text link
    We present a study of a large, statistically complete sample of star-forming dwarf galaxies using mid-infrared observations from the {\it Spitzer Space Telescope}. The relationships between metallicity, star formation rate (SFR) and mid-infrared color in these systems show that the galaxies span a wide range of properties. However, the galaxies do show a deficit of 8.0 \um\ polycyclic aromatic hydrocarbon emission as is apparent from the median 8.0 \um\ luminosity which is only 0.004 \lstarf\ while the median BB-band luminosity is 0.05 \lstarb. Despite many of the galaxies being 8.0 \um\ deficient, there is about a factor of 4 more extremely red galaxies in the [3.6] −- [8.0] color than for a sample of normal galaxies with similar optical colors. We show correlations between the [3.6] −- [8.0] color and luminosity, metallicity, and to a lesser extent SFRs that were not evident in the original, smaller sample studied previously. The luminosity--metallicity relation has a flatter slope for dwarf galaxies as has been indicated by previous work. We also show a relationship between the 8.0 \um\ luminosity and the metallicity of the galaxy which is not expected given the competing effects (stellar mass, stellar population age, and the hardness of the radiation field) that influence the 8.0 \um\ emission. This larger sample plus a well-defined selection function also allows us to compute the 8.0 \um\ luminosity function and compare it with the one for the local galaxy population. Our results show that below 109^{9} LL\solar, nearly all the 8.0 \um\ luminosity density of the local universe arises from dwarf galaxies that exhibit strong \ha\ emission -- i.e., 8.0 \um\ and \ha\ selection identify similar galaxy populations despite the deficit of 8.0 \um\ emission observed in these dwarfs.Comment: 13 pages, 11 figures, Published in Ap

    Visualization of lithium-ion transport and phase evolution within and between manganese oxide nanorods.

    Get PDF
    Multiple lithium-ion transport pathways and local phase changes upon lithiation in silver hollandite are revealed via in situ microscopy including electron diffraction, imaging and spectroscopy, coupled with density functional theory and phase field calculations. We report unexpected inter-nanorod lithium-ion transport, where the reaction fronts and kinetics are maintained within the neighbouring nanorod. Notably, this is the first time-resolved visualization of lithium-ion transport within and between individual nanorods, where the impact of oxygen deficiencies is delineated. Initially, fast lithium-ion transport is observed along the long axis with small net volume change, resulting in two lithiated silver hollandite phases distinguishable by orthorhombic distortion. Subsequently, a slower reaction front is observed, with formation of polyphase lithiated silver hollandite and face-centred-cubic silver metal with substantial volume expansion. These results indicate lithium-ion transport is not confined within a single nanorod and may provide a paradigm shift for one-dimensional tunnelled materials, particularly towards achieving high-rate capability

    Penicillin Use in Meningococcal Disease Management: Active Bacterial Core Surveillance Sites, 2009.

    Get PDF
    In 2009, in the Active Bacterial Core surveillance sites, penicillin was not commonly used to treat meningococcal disease. This is likely because of inconsistent availability of antimicrobial susceptibility testing and ease of use of third-generation cephalosporins. Consideration of current practices may inform future meningococcal disease management guidelines

    Mechanosensitive calcium flashes promote sustained RhoA activation during tight junction remodeling

    Get PDF
    Epithelial cell–cell junctions remodel in response to mechanical stimuli to maintain barrier function. Previously, we found that local leaks in tight junctions (TJs) are rapidly repaired by local, transient RhoA activation, termed “Rho flares,” but how Rho flares are regulated is unknown. Here, we discovered that intracellular calcium flashes and junction elongation are early events in the Rho flare pathway. Both laser-induced and naturally occurring TJ breaks lead to local calcium flashes at the site of leaks. Additionally, junction elongation induced by optogenetics increases Rho flare frequency, suggesting that Rho flares are mechanically triggered. Depletion of intracellular calcium or inhibition of mechanosensitive calcium channels (MSCs) reduces the amplitude of calcium flashes and diminishes the sustained activation of Rho flares. MSC-dependent calcium influx is necessary to maintain global barrier function by regulating reinforcement of local TJ proteins via junction contraction. In all, we uncovered a novel role for MSC-dependent calcium flashes in TJ remodeling, allowing epithelial cells to repair local leaks induced by mechanical stimuli

    Rationale, design, and protocol for the prevention of low back pain in the military (POLM) trial (NCT00373009)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are few effective strategies reported for the primary prevention of low back pain (LBP). Core stabilization exercises targeting the deep abdominal and trunk musculature and psychosocial education programs addressing patient beliefs and coping styles represent the current best evidence for secondary prevention of low back pain. However, these programs have not been widely tested to determine if they are effective at preventing the primary onset and/or severity of LBP. The purpose of this cluster randomized clinical trial is to determine if a combined core stabilization exercise and education program is effective in preventing the onset and/or severity of LBP. The effect of the combined program will be compared to three other standard programs.</p> <p>Methods/Design</p> <p>Consecutive Soldiers participating in advanced individual training (AIT) will be screened for eligibility requirements and consented to study participation, as appropriate. Companies of Soldiers will be randomly assigned to receive the following standard prevention programs; a core stabilization exercise program (CSEP) alone, a CSEP with a psychosocial education (PSEP), a traditional exercise (TEP), or a TEP with a PSEP. Proximal outcome measures will be assessed at the conclusion of AIT (a 12 week training period) and include imaging of deep lumbar musculature using real-time ultrasound imaging and beliefs about LBP by self-report questionnaire. We are hypothesizing that Soldiers receiving the CSEP will have improved thickness of selected deep lumbar musculature (transversus abdominus, multifidi, and erector spinae muscles). We are also hypothesizing that Soldiers receiving the PSEP will have improved beliefs about the management of LBP. After AIT, Soldiers will be followed monthly to measure the distal outcomes of LBP occurrence and severity. This information will be collected during the subsequent 2 years following completion of AIT using a web-based data entry system. Soldiers will receive a monthly email that queries whether any LBP was experienced in the previous calendar month. Soldiers reporting LBP will enter episode-specific data related to pain intensity, pain-related disability, fear-avoidance beliefs, and pain catastrophizing. We are hypothesizing that Soldiers receiving the CSEP and PSEP will report the longest duration to first episode of LBP, the lowest frequency of LBP, and the lowest severity of LBP episodes. Statistical comparisons will be made between each of the randomly assigned prevention programs to test our hypotheses related to determining which of the 4 programs is most effective.</p> <p>Discussion</p> <p>We have presented the design and protocol for the POLM trial. Completion of this trial will provide important information on how to effectively train Soldiers for the prevention of LBP.</p> <p>Trial registration</p> <p>NCT00373009</p

    Choline Diet and Its Gut Microbe–Derived Metabolite, Trimethylamine N-Oxide, Exacerbate Pressure Overload–Induced Heart Failure

    Get PDF
    Background—Trimethylamine N-oxide (TMAO), a gut microbe–dependent metabolite of dietary choline and other trimethylamine-containing nutrients, is both elevated in the circulation of patients having heart failure and heralds worse overall prognosis. In animal studies, dietary choline or TMAO significantly accelerates atherosclerotic lesion development in ApoE-deficient mice, and reduction in TMAO levels inhibits atherosclerosis development in the low-density lipoprotein receptor knockout mouse. Methods and Results—C57BL6/J mice were fed either a control diet, a diet containing choline (1.2%) or a diet containing TMAO (0.12%) starting 3 weeks before surgical transverse aortic constriction. Mice were studied for 12 weeks after transverse aortic constriction. Cardiac function and left ventricular structure were monitored at 3-week intervals using echocardiography. Twelve weeks post transverse aortic constriction, myocardial tissues were collected to evaluate cardiac and vascular fibrosis, and blood samples were evaluated for cardiac brain natriuretic peptide, choline, and TMAO levels. Pulmonary edema, cardiac enlargement, and left ventricular ejection fraction were significantly (P\u3c0.05, each) worse in mice fed either TMAO- or choline-supplemented diets when compared with the control diet. In addition, myocardial fibrosis was also significantly greater (P\u3c0.01, each) in the TMAO and choline groups relative to controls. Conclusions—Heart failure severity is significantly enhanced in mice fed diets supplemented with either choline or the gut microbe–dependent metabolite TMAO. The present results suggest that additional studies are warranted examining whether gut microbiota and the dietary choline→TMAO pathway contribute to increased heart failure susceptibility
    • 

    corecore