34 research outputs found

    How the α-substititionof substrate affects the specific activity and stereoselectivity of carbonyl reductase

    Get PDF
    In asymmetric catalysis, the enantioselectivity of the reaction product is generally controlled by steric repulsion between asymmetric catalyst and substrate. This is also happened when enzyme as the asymmetric catalyst. But steric repulsion wasn’t the sole factor effected on the enzyme activity. The electronic effect of amino acids in or near the enzymatic activity center which interact with substrate can play an important role in this phenomenon. Stereoselective reduction of aromatic ketones with α-halo groups are of particular interest, since the corresponding chiral halohydrins (ÎČ-halo alcohols) are key-intermediates in the synthesis of a number of biologically active compounds. For the mono- or multi- halomethyl ketones as the substrates, the increased electrophilicity of the carbonyl carbon compensates for the lower Lewis basicity and greater steric shielding of the carbonyl oxygen[1]. Please click Additional Files below to see the full abstract

    High corrosion resistance duplex fcc + hcp cobalt based entropic alloys: An experimental and theoretical investigation

    Get PDF
    A series of duplex fcc + hcp Co-based entropic alloys are being discovered as a new category of entropic alloys with outstanding mechanical properties, especially to overcome a typical mechanical trade-off between strength and ductility. In this work, CALPHAD-based (CALculation of PHAse Diagram) thermodynamic calculations were performed to facilitate alloy design and to understand corrosion behaviors. The kinetics of the electrochemical corrosion for designed alloys in typical aggressive anion Cl- was investigated by electrochemical tests, including open circuit potential (OCP), polarization and cyclic polarization curves, and electrochemical impedance spectroscopy (EIS). The valence state and the surface morphologies of the passive films were investigated by X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM). High corrosion resistance materials with high strength and ductility performances were discovered in the present work. Except for Ni-oxides, various spinel compounds and many other oxides including Co2O3, Cr2O3, Fe2O3, MnO, MoO3, CoCr2O4, FeCr2O4, CoFe2O4, and CoMoO4 were observed in the passive films. The adsorbed and penetrated corrosive anion Cl- will be prone to breakdown the passive films with less Cr2O3, CoCr2O4 and MoO3 to form pitting corrosion (also include other localized corrosion, such as intergranular corrosion and crevice corrosion). The microstructure of the hcp martensite with the fcc matrix has played an important role in the propagation of the localized anodic dissolution in the form of cleavage and quasi-cleavage. The theoretical calculations are in good agreement with the experimental observations. This paper paves a way for the future development of high-performance Co-based entropic alloys served in some harsh environments

    Doping inorganic ions to regulate bioactivity of Ca–P coating on bioabsorbable high purity magnesium

    Get PDF
    AbstractPerformance of biomaterials was strongly affected by their surface properties and could be designed artificially to meet specific biomedical requirements. In this study, F−(F), SiO42−(Si), or HCO3−(C)-doped Ca–P coatings were fabricated by biomimetic deposition on the surface of biodegradable high-purity magnesium (HP Mg). The crystalline phases, morphologies and compositions of Ca–P coatings had been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The biomineralization and corrosion resistance of doped Ca–P coatings had also been investigated. The results showed that the Ca–P coating with or without doped elements mainly contained the plate-like dicalcium phosphate dehydrate (DCPD) phase. The doped F, Si, or C changed the surface morphology of Ca–P coatings after mineralization. Doped F enhanced the mineralization of Ca–P coating, and doped Si retarded the mineralization of Ca–P coating. However, H2 evolution of HP Mg discs with different Ca–P coatings was close to 0.4–0.7ml/cm2 after two-week immersion. That meant that the corrosion resistance of the Ca–P coatings with different or without doped elements did not change significantly

    Research on adaptive impedance control technology of upper limb rehabilitation robot based on impedance parameter prediction

    Get PDF
    Introduction: With the aggravation of aging and the growing number of stroke patients suffering from hemiplegia in China, rehabilitation robots have become an integral part of rehabilitation training. However, traditional rehabilitation robots cannot modify the training parameters adaptively to match the upper limbs’ rehabilitation status automatically and apply them in rehabilitation training effectively, which will improve the efficacy of rehabilitation training.Methods: In this study, a two-degree-of-freedom flexible drive joint rehabilitation robot platform was built. The forgetting factor recursive least squares method (FFRLS) was utilized to estimate the impedance parameters of human upper limb end. A reward function was established to select the optimal stiffness parameters of the rehabilitation robot.Results: The results confirmed the effectiveness of the adaptive impedance control strategy. The findings of the adaptive impedance control studies showed that the adaptive impedance control had a significantly greater reward than the constant impedance control, which was in line with the simulation results of the variable impedance control. Moreover, it was observed that the levels of robot assistance could be suitably modified based on the subject’s different participation.Discussion: The results facilitated stroke patients’ upper limb rehabilitation by enabling the rehabilitation robot to adaptively change the impedance parameters according to the functional status of the affected limb. In clinic therapy, the proposed control strategy may help to adjust the reward function for different patients to improve the rehabilitation efficacy eventually

    Post-treatment neutrophil-lymphocyte ratio independently predicts amputation in critical limb ischemia without operation

    Get PDF
    OBJECTIVES: Limited information is available concerning the post-treatment neutrophil-lymphocyte ratio in critical limb ischemia patients who receive conservative therapy. Accordingly, this study was designed to evaluate the predictive value of the post-treatment neutrophil-lymphocyte ratio in critical limb ischemia patients without surgery. METHOD: From January 2009 to January 2011, critical limb ischemia patients were admitted to a vascular center. The demographic data, patient histories, comorbidities and risk factors were documented, and the differential cell count was determined at admission and seven days later after conservative therapy. The cutoff value of the post-treatment neutrophil-lymphocyte ratio was determined by an ROC curve. Patients were divided into groups A and B according to the cutoff value. Amputation-free survival was compared between groups. Univariate and multivariate analyses were used to identify independent risk factors. RESULT: A total of 172 patients were identified with a mean age 71.98±10.09 years; among them, 122 were male. A value of 3.8 was identified as the cutoff value of the post-treatment neutrophil-lymphocyte ratio. Groups A (post-treatment neutrophil-lymphocyte ratio ≄3.8) and B (post-treatment neutrophil-lymphocyte rati

    Modeling and Evaluation of a Novel Hybrid-Driven Compliant Hand Exoskeleton Based on Human-Machine Coupling Model

    No full text
    This paper presents the modeling design method for a novel hybrid-driven compliant hand exoskeleton based on the human-machine coupling model for the patients who have requirements on training and assisting. Firstly, the human-machine coupling model is established based on the kinematics characteristics of human fingers and the Bernoulli beam formula. On this basis, the variable stiffness flexible hinge (VSFH) is used to drive the finger extension and the cable-driven mechanism is used to implement the movement of the finger flexion. Here, a hand orthosis is designed in the proposed hand exoskeleton to act as the base and maintain the function position of the hand for patients with hand dysfunction. Then, a final design prototype is fabricated to evaluate the proposed modeling method. In the end, a series of experiments based on the prototype is proceeded to evaluate its capabilities on stretching force for extension, bio-imitability, finger flexion capability, and fingertip force. The results show that the prototype has a significant improvement in all aspects of the ability mentioned above, and has good bionics. The proposed design method can be utilized to implement the rapid design of the hybrid-driven compliant hand exoskeleton with the changed requirements. The novel modeling method can be easily applied in personalized design in rehabilitation engineering

    Development and Evaluation of a Rehabilitation Wheelchair with Multiposture Transformation and Smart Control

    No full text
    Stroke and other neurological disorders have an effect on mobility which has a significant impact on independence and quality of life. The core rehabilitation requirements for patients with lower limb motor dysfunction are gait training, restand, and mobility. In this work, we introduce a newly developed multifunctional wheelchair that we call “ReChair” and evaluated its performance preliminarily. ReChair seamlessly integrates the mobility, gait training, and multiposture transformation. ReChair driving and multiposture transformation are done using the voice, button, and mobile terminal control. This work describes the functional requirements, mechanical structure, and control system and the overall evaluation of ReChair including the kinematic simulation of the multiposture transformation and passive lower limb rehabilitation training to quantitatively verify the motion capability of ReChair, the voice control system evaluation that shows how the voice recognition system is suitable for home environment, the sensorless speed detection test results that indicate how the wheel speeds measured by sensorless method are appropriate for travelling control, and the passive and balance training test results that show how the lower limb rehabilitation training in daily life by ReChair is convenient. Finally, the experimental results show that ReChair meets the patients’ requirements and has practical significance. It is cost-effective, easy to use, and supports multiple control modes to adapt to different rehabilitation phases

    Research of a novel biodegradable surgical staple made of high purity magnesium

    Get PDF
    Surgical staples made of pure titanium and titanium alloys are widely used in gastrointestinal anastomosis. However the Ti staple cannot be absorbed in human body and produce artifacts on computed tomography (CT) and other imaging examination, and cause the risk of incorrect diagnosis. The bioabsorbable staple made from polymers that can degrade in human body environment, is an alternative. In the present study, biodegradable high purity magnesium staples were developed for gastric anastomosis. U-shape staples with two different interior angles, namely original 90° and modified 100°, were designed. Finite element analysis (FEA) showed that the residual stress concentrated on the arc part when the original staple was closed to B-shape, while it concentrated on the feet for the modified staple after closure. The in vitro tests indicated that the arc part of the original staple ruptured firstly after 7 days immersion, whereas the modified one kept intact, demonstrating residual stress greatly affected the corrosion behavior of the HP-Mg staples. The in vivo implantation showed good biocompatibility of the modified Mg staples, without inflammatory reaction 9 weeks post-operation. The Mg staples kept good closure to the Anastomosis, no leaking and bleeding were found, and the staples exhibited no fracture or severe corrosion cracks during the degradation
    corecore