20 research outputs found

    Observation of the Anomalous Hall Effect in a Collinear Antiferromagnet

    Full text link
    Time-reversal symmetry breaking is the basic physics concept underpinning many magnetic topological phenomena such as the anomalous Hall effect (AHE) and its quantized variant. The AHE has been primarily accompanied by a ferromagnetic dipole moment, which hinders the topological quantum states and limits data density in memory devices, or by a delicate noncollinear magnetic order with strong spin decoherence, both limiting their applicability. A potential breakthrough is the recent theoretical prediction of the AHE arising from collinear antiferromagnetism in an anisotropic crystal environment. This new mechanism does not require magnetic dipolar or noncollinear fields. However, it has not been experimentally observed to date. Here we demonstrate this unconventional mechanism by measuring the AHE in an epilayer of a rutile collinear antiferromagnet RuO2_2. The observed anomalous Hall conductivity is large, exceeding 300 S/cm, and is in agreement with the Berry phase topological transport contribution. Our results open a new unexplored chapter of time-reversal symmetry breaking phenomena in the abundant class of collinear antiferromagnetic materials.Comment: 33 pages, 14 figures, 2 table

    Publisher Correction: An anomalous Hall effect in altermagnetic ruthenium dioxide

    Get PDF
    In the version of this article initially published, square brackets and parentheses were incorrect in Fig. 1g and throughout Fig. 2 (excepting lower labels in Fig. 2d–f). Further, in the second paragraph of the “Consistency with theoretical prediction” subsection of the main article, in the text now reading “the reorientation-field scale, namely, HC = (H2 AE − H2 d) /Hd,” the term “H2 AE” wasn’t shown as squared. The changes have been made in the HTML and PDF versions of the article

    Other Ethnicity Effect in Ensemble Coding of Facial Expressions

    No full text

    The drug tolerant persisters of Riemerella anatipestifer can be eradicated by a combination of two or three antibiotics

    No full text
    Abstract Background Riemerella anatipestifer (RA), the causative agent of duck infectious serositis, leads to high mortality in duck flocks and great economic losses in duck industry. Previous studies on RA are largely focused on its detection, virulence factors, serology, epidemiology as well as antibiotic resistance. Neither drug tolerant persisters nor the persister level under the treatment of antibiotics has been revealed. The persisters are non-growing or dormant cells within an isogenic bacterial population; they play important roles in recurrent infection and formation of drug resistant mutants. The aim of this study is to detect the drug tolerant persisters from the exponentially grown population of RA reference strain (RA 11845) or RA clinical isolate (RA TQ3), and address whether a single antibiotic or a combination of two or three antimicrobials can eradicate the persisters at respective maximum serum/plasma concentration (Cmax). Result With the concentration of a test antibiotic increased, a small fraction of cells in the exponentially grown culture of RA reference strain (RA 11845) or RA clinical isolate (RA TQ3) always survived, irrespective of treatment time, indicating the presence of drug tolerant presisters. A single antibiotic cannot eradicate the persisters of both RA strains at respective Cmax, except that the Cmax of ceftiofur wiped out the population of the reference strain (RA 11845). Besides, the clinical isolate RA TQ3 presented a higher tolerance to ceftiofur in comparison to that of the reference strain (RA 11845). Combination of any two or three antimicrobials eliminated the drug tolerant persisters of RA TQ3 completely at respective Cmax. Conclusion A sub-community of drug tolerant persisters was present in RA population. Persisters of RA TQ3 are single drug tolerant and not multidrug tolerant persisters

    A Genetic Toolkit for Dissecting Dopamine Circuit Function in Drosophila

    No full text
    Summary: The neuromodulator dopamine (DA) plays a key role in motor control, motivated behaviors, and higher-order cognitive processes. Dissecting how these DA neural networks tune the activity of local neural circuits to regulate behavior requires tools for manipulating small groups of DA neurons. To address this need, we assembled a genetic toolkit that allows for an exquisite level of control over the DA neural network in Drosophila. To further refine targeting of specific DA neurons, we also created reagents that allow for the conversion of any existing GAL4 line into Split GAL4 or GAL80 lines. We demonstrated how this toolkit can be used with recently developed computational methods to rapidly generate additional reagents for manipulating small subsets or individual DA neurons. Finally, we used the toolkit to reveal a dynamic interaction between a small subset of DA neurons and rearing conditions in a social space behavioral assay. : The rapid analysis of how dopaminergic circuits regulate behavior is limited by the genetic tools available to target and manipulate small numbers of these neurons. Xie et al. present genetic tools in Drosophila that allow rational targeting of sparse dopaminergic neuronal subsets and selective knockdown of dopamine signaling. Keywords: dopamine, genetics, behavior, neural circuits, neuromodulation, Drosophil

    An anomalous Hall effect in altermagnetic ruthenium dioxide

    No full text
    The anomalous Hall effect is a time-reversal symmetry-breaking magneto-electronic phenomenon originally discovered in ferromagnets. Recently, ruthenium dioxide (RuO2) with a compensated antiparallel magnetic order has been predicted to generate an anomalous Hall effect of comparable strength to ferromagnets. The phenomenon arises from an altermagnetic phase of RuO2 with a characteristic alternating spin polarization in both real-space crystal structure and momentum-space band structure. Here we report an anomalous Hall effect in RuO2 with an anomalous Hall conductivity exceeding 1,000 Ω−1 cm−1. We combine the vector magnetometry and magneto-transport measurements of epitaxial RuO2 films of different crystallographic orientations. We show that the anomalous Hall effect dominates over an ordinary Hall contribution, and a contribution due to a weak field-induced magnetization. Our results could lead to the exploration of topological Berry phases and dissipationless quantum transport in crystals of abundant elements and with a compensated antiparallel magnetic order.[A Publisher Correction to this article was published on 29 November 2022: https://www.nature.com/articles/s41928-022-00907-7
    corecore